B. Carle # INSTITUTE for # **URBAN STUDIES** TD 195 E5 M38 1977 UNIVERSITY OF MARYLAND College Park 20742 L'is #### CONTENTS I. THE CEIP IMPACT MODEL: TECHNICAL ASSISTANCE MATERIALS II. THE CEIP IMPACT MODEL: TECHNICAL MANUAL III. CEIP IMPACT FORECASTING REVIEW MATERIALS IV. ISSUES IN ENERGY FACILITY IMPACT FORECASTING MATERIALS PREPARED FOR FORECASTING "ENERGY FACILITY IMPACTS ON LOCAL GOVERNMENT/ Prepared for the Office of Coastal Zone Management, NOAA Contract No. 7-35714 Institute for Urban Studies Woods Hall University of Maryland College Park, MD 20740 October 1977 ## PREFACE These materials were originally prepared to aid the Coastal Energy Impact Program of the Office of Coastal Zone Management undertake forecasts of impacts of energy facilities on local governments. Because the model developed may have wider use for forecasting impacts on local government from any major investment, we are considering a revision of the materials and development of our own computer program for its use, followed by making the materials widely available. Any comments on either technical aspects, modes of presentation, or the usefulness of the materials to local governments will be appreciated. Robert L. Bish OCZHI Wannel THE CEIP IMPACT MODEL: TECHNICAL ASSISTANCE MATERIALS Prepared By Dr. Robert L. Bish, Dr. John D. Wolken and Candis L. Brown in cooperation with OCZM Staff Prepared for the Office of Coastal Zone Management, NOAA Contract No. 7-35174 May 1977 ## CONTENTS | | Pages | |--|----------------| | I. Explanation and Instructions for the CEIP Impact Model Data Schedules | 2 | | Introduction | 2 | | Instructions for Completing Data Schedules | 3 | | Data Schedules | | | Energy Facility Description - Construction Phase Energy Facility Description - Operations | 9 | | 3. Local Area Description4. Government Revenue5. Government Expenditure | 13
16
20 | | II. CEIP Impact Model Forecasting Procedures | 21 | | Baseline Forecasts Post-Impact Forecasts Summary | 21
22
24 | | III. Criteria for Alternative Models for Energy
Facility Impact Forecasts | 25 | | Appendices: | | | A - Federal-State-Local Population Estimation Agencies | | - B Bureaus of Business and Economic Research in Coastal States - C Bureaus of Governmental Research Local and State Agencies 7 D - U. S. Department of Labor, Bureau of Labor Statistics, Cooperating State Agencies ## CONTENTS | | Pages | |---|-----------------------------| | I. Explanation and Instructions CEIP Impact Model Data Scheo | | | Introduction | 2 | | Instructions for Completing | ng Data Schedules 3 | | Data Schedules | | | 1. Energy Facility Design Construction Phase 2. Energy Facility Design Operations 3. Local Area Descript 4. Government Revenue 5. Government Expendit II. CEIP Impact Model Forecastic Baseline Forecasts Post-Impact Forecasts Summary | oription - 11 ion 13 ure 20 | | III. Criteria for Alternative Mo
Facility Impact Forecasts | dels for Energy | | Appendices: A - Federal-State-Local Pop | ulation Estimation | - Agencies - B Bureaus of Business and Economic Research in Coastal States - C Bureaus of Governmental Research Local and State Agencies - D U. S. Department of Labor, Bureau of Labor Statistics, Cooperating State Agencies ## I. EXPLANATION AND INSTRUCTIONS FOR THE CEIP IMPACT MODEL #### INTRODUCTION The CEIP Impact Model forecasts the fiscal impact of an energy facility and its associated population on a government. To estimate the net fiscal impact of an energy facility, several separate forecasts must be made. These forecasts are: - Baseline Revenues and Expenditures Government revenues and expenditures anticipated without any energy facility. - 2) Expenditures after the impact of the energy facility. - 3) Revenues after the impact of the energy facility. - 4) Net Fiscal Impact The difference between expenditure and revenue after the impact of the energy facility. Estimation of net fiscal impact may be an important determinant of the payback schedule of loans made through the CEIP To assist in making forecasts for small local governments, we have reviewed studies of more than 300 impacts of new economic activities on their surrounding areas before designing a relatively simple impact model which captures the most essential elements of industrial impact processes. The model is generalized to accommodate a variety of governments. Each stage of the model is clearly defined and can be easily modified to take into account unique local conditions. Unlike other models used for similar purposes, it is not merely a "black box" into which data goes and forecasts emergement without being able to understand the calculations and assumptions inherent in the forecasts. However, effective use of such a model requires a cooperative effort by state and local government officials, private interests, and persons familiar with the consequences of economic impacts in local areas. processes through which this cooperation is to be achieved include: - 1) Local officials complete the Data Schedules. Some of the data requires cooperation of officials of companies proposing the energy facility. - 2) Using the data collected by local officials, OCZM technical assistance personnel will use the CEIP Impact Model to make baseline and impact projections. - 3) After preliminary projections are made, OCZM personnel will meet with local officials to discuss the projections and the data and assumptions upon which they are based. During this meeting it will be possible to alter data or assumptions and see how much difference is made in the projections. This will enable local officials to understand the potential impacts of the energy facility and the methods by which the forecasts are made. It will also insure that unique local conditions that affect the forecasts can be taken into account. It is believed that through common dialogue the fiscal impact forecasts may be calculated in as accurate and equitable a manner as is currently possible. Every effort has been made to keep data requirements to a minimum. To assist with all data collection, commonly available sources are indicated in the following instructions. In addition, Appendix B lists members of The Association for Business and Economic Research and Appendix C lists members of The Association of Government Research. These member institutes in a state may be able to provide data or recommend data sources to assist local officials to complete the Data Schedules. ## INSTRUCTIONS FOR COMPLETING DATA SCHEDULES Most of the data required will be available from local government fiscal records, the environmental impact statement for the energy facility, or by phone from energy facility company officials and other knowledgeable citizens in the community. The most likely sources for each item are indicated in the following instructions. There are also a couple places where a hand calculator for calculating percentages will be useful, and there are some estimates where the best sources of information may be the general consensus of government officials, realtors, bankers, and/or other knowledgeable citizens. There are several specific instructions that apply to all schedules. - 1) Most data will be filled in on lines or in columns which have a specific number of spaces for entries. Please fill in these places with one letter or number on each space, with entries adjusted to the right margin. For example, in Schedule 1, item 1.1, entries for an estimated 1979 construction workforce of 2,100, with an additional 300 new employees in local firms supplying the construction activity would look like this: - 1.1 Construction Workforce: Year* Number (CFE) Number of New Employees In Local Business Supplying Construction (ICFE) 1 9 7 9 2 1 0 0 3 0 0 - 2) In filling in columns, begin with the earliest year at the top. Thus, columns requiring historical data will begin with oldest historical data and finish with current data. Columns requiring future estimates will begin with current year data and terminate with future data. - 3) Where there are lines or blank spaces for writing in answers instead of a specific number of spaces, please print or type. - 4) Where something is not applicable or unclear, make the entry you feel is best and make a note that you have placed a comment or question on the back of the page. Before data is entered into a computer, forms will be checked for omissions and comments so that instructions or the format of the schedules can be improved in the future. Following instructions are suggested data sources for each schedule. #### SCHEDULE 1 - ENERGY FACILITY DESCRIPTION - CONSTRUCTION PHASE Data to complete this schedule can be derived from the energy facility Environmental Impact Statement or directly from an official of the company proposing the energy facility. This schedule, along with Schedule 2, is also the same for any government impacted by the energy facility, so a cooperative effort among impacted governments or completion by a regional or state agency may be desirable. - 1.1 The number of construction employees is self-explanatory. The estimate of new employees in local businesses supplying energy facility construction materials is very important. This estimate should be obtained directly from energy facility company officials or from managers of local construction materials supply firms. It may be helpful to obtain an estimate of construction materials to be purchased from the energy facility company official to help local suppliers make new employee estimates. - 1.2 For land
purchases indicate the estimated cost of land to be purchased during each year. For total costs of completed parts of the facility indicate all non-land costs. Define completed as that part of the facility completed so that it can be assessed for property tax purposes. 1.3 - These figures will be estimates, but they are important if construction materials are taxed. If construction materials are not taxed, this data may be omitted. SCHEDULE 2 - ENERGY FACILITY DESCRIPTION - OPERATIONS Schedule 2 is similar to Schedule 1, except that it is for operation of the facility instead of its construction. - 2.1 Similar to 1.1. Note that for the last line in the table -- years 11-30 -- an estimate of the average annual employment for those years is all that is needed. - 2.2 Similar to 1.3. ## SCHEDULE 3 - LOCAL AREA DESCRIPTION 3.1 - Data on population concentrations at different distances from the energy facility may be obtained from the Census of Population volume for the state within which the facility is located. In some cases good highway department maps will contain all the information needed. Simply draw a set of circles around the facility location and add up the population of centers within the respective rings. Subtracting out any population within the governmental unit for which the Fiscal Management Schedule is being prepared. Be sure the population data for the rings is for the same year as the data for the population "within the Local Government" even if data is several years old. For small governments, such as cities or towns, simply estimate the distance from the center of town to the energy facility. For large governments, such as counties which contain several separate population concentrations, it will be necessary to determine the distance from the weighted average of subarea population concentrations. The weighted average of several population concentrations is calculated as follows: Center 1 - population x distance = Center 2 - population x distance = Center 3 - population x distance = Total population Sum Divide the sum by the total population to obtain the distance from the population center of the government to the energy facility. - 3.3 Employment and unemployment for county areas from January through December 1976 is published in State and County Employment and Unemployment January December 1976 from The National Technical Information Service. A list of state agencies responsible for employment data on each state is included at the end of these instructions as Appendix D. Finally, in smaller areas educated guesses on the number of jobs in the government and the number of employed and unemployed persons residing in the government will have to be made. In addition to data in possession of the local or county government planning office, it may be useful to check with the Chamber of Commerce, an economic development district, or similar organizations in the area. - 3.4 Population data for all counties is available from 1970 on in "Estimates of the Population of Counties" from the Bureau of the Census. Data for before 1970 for large counties is available in "Population Estimates for Selected SMSAs and Their Counties" also Bureau of the Census. Smaller governments will need to use their own estimates, data from a state agency, or perhaps the Rand McNally Commercial Atlas, published annually. See Appendix A for state agencies which may be able to provide assistance with population data and estimates. Per capita personal income by counties is available from the "Survey of Current Business" and "Local Area Personal Income" (Table 3), both published annually. The "Survey" is available from the Bureau of Economic Analysis, U. S. Department of Commerce; "Local Area Personal Income" is from the National Technical Information Service. The state agency responsible for employment data may also have income data. Use local government data if it is available, otherwise use county area data. - 3.6 If the state or local government makes long range population forecasts, that forecast may be reported here and it will be used for making baseline revenue and expenditure forecasts in the model. - 3.7 Complete school enrollment figures for past 10 years only if applying government is a school district. - 3.8 School district enrollment forecasts (without the energy facility) may be used for baseline forecasts if the school district has such forecasts available. #### SCHEDULE 4 - GOVERNMENT REVENUE This data will generally come directly from local government fiscal records. Be sure and give the dates of the local government's fiscal year in the blank at the top of the page. - 4.1 The column 2 list of total revenues should exclude revenue from borrowing and revenue from grants for specific projects. Revenues should include all tax revenues, special assessments, user charges, fines and fees, and revenues received from other governments such as shared taxes, formula grants or revenue sharing. Revenues from selling packages of services to other governments may be either included or excluded; if included also include expenditures for performance of such services in total expenditures in 5.1; if excluded also exclude expenditures for performing such services from total expenditures in 5.1. - 4.2 List the major taxes and their current rates used by the government. List property tax rates in percent of assessed value instead of in mills. (To do this, simply place a decimal between the hundreds and tens numbers in the millage designation. That is, 175 mills equals 1.75 percent, to be entered as 1.7 5) Based on past trends in tax rates, estimate what future tax is likely to be for each tax (without the energy facility). - 4.3 Check with the assessor or tax collector to determine whether or not property taxes are collected during the same fiscal year assessments are made. - 4.4 The assessor will know if a state agency makes such studies. If not, the assessor should have an idea of the appropriate percentages. - 4.5 The assessor will have this information. - 4.6 If a sales tax is used, indicate whether or not purchases by a business which do not become a physical part of the final product are taxed under it. In some states, as much as one-third of the retail sales tax revenues are derived from this source. A similar situation exists for construction materials which are sometimes taxed under the retail sales tax, unless the constructed facility is itself to be sold. - 4.7 There are unlikely to be previous studies of tax exporting by businesses or tax revenues paid by tourists. The reason for attempting to isolate these revenues is that they cannot be expected to increase in response to energy facility induced growth along with taxes paid by local businesses or local residents. Consult with the tax assessor for an estimate of property taxes paid by businesses who sell their products outside the local government. Consult with major retailers or hotel-motel owners and other retailers serving tourists for an estimate of tourist based revenues. - 4.8 User charges vary among local governments. Be sure and consider utility charges. Contact an energy facility company official if data is needed on activities and requirements of the energy facility to assist in making the estimates. - 4.9 Estimate as closely as possible. ## SCHEDULE 5 - GOVERNMENT EXPENDITURE As with revenue data, the source will be general government fiscal records. 5.1 - Include general expenditures for both operating and capital projects. Exclude expenditures from project-related grants or from borrowed funds. Check with 4.1 to see if consistent. | | Energy Facil | ity Name | Code | |------|----------------------------------|---|-------------------------------------| | | | Government | | | SCHE | DULE 1: ENERGY FACILITY | DESCRIPTION - CONSTRUCTION | N PHASE | | 1.1 | Construction Workforce | | | | | Year Number (CFE) | Number of New Employee inesses Supplying Cons | s in Local Bus-
truction* (ICFE) | | | | | | | | | | · - | | | | , | · - | | | | , | - - | | | | , | · - | | | | , | _ | | | | , | - | | | | | _ | | | | , | - | | | | , | | | 1.2 | Construction Costs (Ener
Gove | gy Facility Components Wiernment only) | thin the | | Year | Land | Total Cost of Parts
of the Facility Com-
pleted During the Year
(Exclude land) | | | | , | , | ,, | | | | | | | | | | | | | | | | | | , | | , | | | ,, | | | | | | ,, | , | | | , | , | | | | | '- ,, | ,, | 1.3 Construction Materials to be Purchased: (Complete only if construction materials are subject to taxation.) | Year | Cost (BT) | |------|-----------| | | | | | ' | | | | | | | | | | | | ' | | | ' | | | ' | | | | | | '' | | | Energy F | acility Name | Code | | | | | | |------|--------------------|-----------------|---|--|--|--|--|--| | | Name of Government | | | | | | | | | SCHE | DULE 2: EN | ERGY FACILITY D | ESCRIPTION - OPERATIONS | | | | | | | 2.1 | Operations | Work Force | | | | | | | | | Year | Number (OFE) | Number of New Employees Likely in Local
Businesses From Which Operations
Materials Will be Purchased (ICFE) | | | | | | | | | ' | | | | | | | | | | ' | | | | | | | | | | ' | ' | | | | | | | | | ' | ' | | | | | | | | | ' | | | | | | | | | | ' | ' | | | | | | | | | ' | ' | | | | | | | | | ' | ' | | | | | | | | | ' | | | | | | | | | | ' | ' | | | | | | Years 11 - 30 | 2.2 | Materials | Which | Do Not | Become | e a | Physi | ical | Part | of | the | Produc | ct | |-----|------------|--------|----------|--------|-----|--------|------|--------|----|------|--------|----| | | or Product | ts: (C | complete | only | if | such | mate | erials | ar | e su | bject | to | | | | t | axation | by th | e e | goverr | men | t.) | | | | | | Year | Cost
(BT) | |---------------|-----------| | | ' | | | | | | ' | | | | | | '' | | | | | | | | | ' | | | | | | | | Years 11 - 30 | ' | | Energy Facility Name | | Code | 9 | |---|-----------------|---|-------------------------| | | | | | | *** | | | | | SCHEDULE 3: LOCAL AREA DESC | | | | | 3.1 Population Distribution | Around Energy I | Facility Site | | | Population | | | | | Within 10 Miles''_ | (POP10) | | | | Over 10 to 20 | (POP 20) | Provided to the | | | Over 20 to 30 | (POP 30) | Exclude population the local government | ment for | | Over 30 to 40 | (POP 40) | which the fiscal schedule is being | management
prepared, | | Over 40 to 50'' | (POP 50) | | | | Over 50 to 60 | (POP60) | | | | Within Local Government' | (POPG) | | | | Year of Population Data | | | | | Distance From Energy Facilit
Government (DIST) | y Site to Popul | lation Center of | | | 3.2 Is the Energy Facility | Located Within | the Government? | | | Yes | No | · | | | 3.3 Employment | | | _ | | Withi | n Government | Within County | Year of
Data | | Number of Jobs (J) | ' | / | | | Number of Residents Employed (Even if jobs are outside of area) (E) | ' | ' | | | Number of Residents | | | | 3.4 Population of Government for Past 10 Years Year Population (P) Per Capita Personal Income (Y) _ _'_ _ _'_ _ _ _ _ _'_ _ _'_ _ _ - -'- - -'- - -_ _'_ _ _'_ _ _ --'---'---- -'- - -'- - -_ _'_ _ _'_ _ _ (Current)_______ Area For Which Per Capita Personal Income Estimates Were Used in 3.4 Governmental Unit _ _ County _ _ SMSA _ _ BEA Area _ _ 3.6 Population Forecasts Without Energy Facility - For Up to 20 Years Year Population (P) Year Population (P) -'- - -'- - -_'_ _ _ _ _ _ _'- - -'- - -_'_ _ _'_ _ _ _'_ _ _ _ _ _ -'---- | 3.7 | School Enrol | Llments | (To be com
a school | pleted on
district. | ly if o | government is | |-----|-----------------------------|---------|------------------------|------------------------|---------|----------------| | | | Year | | Enrollme | ent (S) | | | | | | _ | _' | | | | | | | | _' ' | | | | | | | | -'' | | | | | | | | -'' | | | | | | | _ | -'' | | | | | | | | -'' | | | | | | | _ | -'' | | | | | | | _ | _'' | | | | | | | _ | _'' | · | | | • | (Current) | | _ | _'' | · | | | 3.8 | School Dist:
Energy Faci | | | | rollmer | nt, Without | | | Year | Enrollm | ent (S) | Yea | ar | Enrollment (S) | | | | _' | .' | | | _'' | | | | _' | .' | | | -' | | | | _' | .' | | | _' | | | | _' | .' | | | _' | | | | _' | · | | | _' | | | | _' | ./ | | | -'' | | | | _' | | | | _' | | | | _' | | <u> </u> | | _'' | | | | _' | | magnifi de | | _'' | | | | _' | -' | | | _'' | | Energy Fa | cility Name | | Co | de | |-------------------|--|----------------------------|---|----------------------| | Name | e of Government_ | | | | | | _ | | | | | SCHEDULE 4: GOVE | NMENT REVENUE | | | | | 4.1 Total Revenue | es for Past 10 Ye | ears (Excludes
for spec | borrowing a | nd grants
s.) | | | Year | Revenue (BL | R) | | | | | ''- | · | | | | | ''- | | | | | | ''- | | | | | | ''- | · | | | | | ''- | · | | | • | | ''- | · · | | | | | ''- | · •••• | | | | | ''- | | | | | | ''- | · was was | | | (Current) | | '' | · White cuples | | | 4.2 Major Taxes | | | | • | | Name of Tax | Current
Tax Rate
(In Percent) (T | | xpected Rates
n Percent) (1
In 10 Yrs | s
r)
In 15 Yrs | | | 8 | 8 | % | % | | | * | ° | % | % | | | * | % | % | % | | | ⁸ | % | % | % | | | * | % | % | % | | | . — — — * | % | % | % | | | % | | % | 8 | | 4.3 | When are property tax revenues received relative to assessments made? | | | | | | |-----|--|--|--|--|--|--| | | Same Fiscal Year Following Fiscal Year | | | | | | | 4.4 | What is the ratio of assessed value to market value for industrial property similar to the proposed energy facility? % (g) | | | | | | | 4.5 | What proportion of property tax revenues accrue from residential property? % (q) | | | | | | | 4.6 | If retail sales taxes are used, does the tax base include: (Yes or No) | | | | | | | | a. Items purchased by a business which do not become a physical part of the business's final product? | | | | | | | | b. Construction materials? If not included in sales tax, what tax rate, if any, applies to construction materials? % | | | | | | | 4.7 | Revenues received by a local government are not all paid by local government citizens. Taxes paid by nonresidents are called exported taxes. Exported taxes are of two basic kinds. First, taxes paid by local businesses whose revenues are derived from products sold outside the local government and, second, taxes paid by local businesses whose customers are tourists. Please estimate below the proportion of government revenues which may be characterized as exported taxes. | | | | | | Proportion of Revenues Exported. _ _ % (m) | Are there a will be sub revenues be | ny specific user charges the new energy facility ject to and, if so, please indicate the estimated low: | |-------------------------------------|---| | Kinds of Ch | arges | Estimated F | evenue | | Year | Revenue (UT) | | | | | | | | | ' | | | ' | | | ' | | | ' | | | ' | | | ' | | | ' | | | ' | | ars 11 - 30 | per year | | 4.9 | kind of tax not
4.2, please pro | acility will be subject to an inventory-type roperty), pipeline royalties, or any other listed as a major revenue source in items vide an estimate of the revenues to be received facility in future years. | |------|------------------------------------|---| | | Kinds of Taxes | Estimated Reven | ue . | | | Year | Revenue (OT) | | • | | ' | | | | ' | | | | ' | | | | | | | | ' | | | | ' | | | | ' | | | | ' | | | | ' | | | | ' | | Year | s 11 - 30 | , per year | _____ per year | Energy Facility Name | Code | |---|--| | Name of Government_ | | | SCHEDULE 5: GOVERNMENT EXPENDITURE | | | 5.1 Total General Expenditures for expenditures from project-relationships. | Last 10 Years (Excludes ted grants and borrowing.) | | Year | Expenditure | | | '' | | | ' | | | ' | | | ' | | | ' | | | ' | | · | ' | | | ' | | | ' | ## II. CEIP IMPACT MODEL FORECASTING PROCEDURES To assist users to understand the CEIP Impact Model, a brief description of each forecasting process is presented here. This description is for general users. Analysts interested in the equations and the computer program may obtain a technical manual directly from OCZM in the near future. The model is designed to make three final and three intermediate forecasts. The final forecasts include (1) baseline expenditures and baseline revenues, (2) post-energy facility impact expenditures, and (3) post-energy facility impact revenues. The net fiscal impact of the energy facility can be calculated from the post-impact expenditure and revenue forecasts. The three intermediate forecasts are (1) baseline population, (2) population after the energy facility impact, and (3) per capita personal income. Each forecast is made for each year for 20 years. The population forecasts are important intermediate steps because expenditures and revenues are forecast partially on a per capita basis. The forecast of personal income is necessary because revenue forecasts are tied to personal income growth. The basis of each of these forecasts will be described in turn. #### BASELINE FORECASTS ## Baseline Population Forecasts of baseline population are made by simply projecting the historic trend into the future. The local government can substitute its own population projections if it desires. ## Baseline Per Capita Income Forecasts of baseline income are made by simply projecting the historic trend into the future. The local government can substitute its own per capita income projections if it desires. ## Baseline Revenues and Expenditures The revenues forecast are revenues from all general sources including taxes, user charges, special assessments, fines and fees, and revenues received from other governments such as shared taxes, formula grants, or revenue sharing. Excluded from forecasts of revenues are revenues from borrowing or revenues from grants for specific projects. It is assumed that revenues are spent and, thus, the expenditures forecast are expenditures from general revenues excluding expenditures from project-related grants or expenditures from borrowed funds. The baseline revenue forecast is made by estimating the increase in revenues associated with past increases in population and increases in per capita personal income, and then projecting future increased revenues on the basis of the baseline population and per capita income forecasts. Baseline expenditures are assumed to equal baseline revenues because the same basic variables - changes in population and per capita income - are also the strongest determinants of government expenditure increases over time. ## POST-IMPACT FORECASTS Forecasts of
population and revenues after energy facility impacts are more complex than baseline forecasts. ## Post-Impact Population Forecast The number of employees at the energy facility and new employees in local firms directly servicing the energy facility are added to determine the total new direct employment. These employees are then allocated to geographic areas, including the area of the local government for which the impact forecast is being prepared, within commuting distance of the energy facility. The formula for allocation is inversely related to distance (the further the distance the fewer the employees who will be located there) and directly related to existing population concentrations (the larger an existing population concentration the greater the number of employees who will reside there). The weights of each variable in the allocation equation are based on previous studies of the residential location of employees around a facility. The forecasts of the employment residential distribution are one element of the model that will be specifically discussed with local government officials after preliminary forecasts have been made. After employees have been allocated and the number expected to locate within the local government area known, a multiplier is used to estimate the number of secondary jobs that will be created in response to the higher incomes and new employee population attracted to the energy facility. The multiplier used varies from 1.05 to 1.5, depending on the number of jobs in the existing community. multiplier indicates the total number of jobs generated from one new energy facility job, e.g., a multiplier of 1.05 indicates 1 energy facility job and .05 secondary jobs per energy facility job -- with this multiplier it takes 20 energy facility jobs to generate 1 secondary job. With a multiplier of 1.5, it takes only 2 energy facility jobs to generate a secondary job.) The fewer the number of existing jobs in a community the smaller the multiplier, up to 5,000 jobs where the multiplier becomes 1.5. This is because secondary employment in all but the most isolated communities will tend to occur in areas where business activity already exists - not in purely residential areas. After the total direct and secondary jobs are estimated, an estimate of the number of jobs that will be filled by new residents in the community is necessary. This estimate is made by subtracting .3 of the unemployed - who it is assumed find either energy facility or secondary employment - and if the employee/population ratio in the community is lower than the national average, it is also assumed that some residents not formerly employed will enter the labor force. The further the local area employment/population ratio diverges from the national, the more local residents who enter the labor force. If the area has an employment/population ratio equal to or greater than the national ratio, no additional old residents are assumed to enter the labor force. These adjustments for unemployment and labor force entry result in a forecast of the number of jobs which will be held by residents new to the community. Following estimation of the number of new resident job holders, the increase in total population is estimated by multiplying the number of new resident job holders by the average population per employee. This estimate of impact population is then added to baseline population estimates to obtain the post-impact population forecast. ## Post-Impact Revenue Forecast The post-impact revenue forecast involves several steps. First revenues from baseline revenue forecasts are adjusted to exclude revenues from businesses whose products are sold outside the local government or whose customers are primarily tourists or nonresidents. These revenue sources are excluded because having new population does not automatically result in increases in these two revenue A second adjustment in revenues is made by lagging and adjusting residential property tax revenues from the new population. The lag is based on the construction-assessment-collection lag within local government and the rate of new population growth. greater the rate of new population growth, the lower the residential property tax revenues per capita because of the increased likelihood that new residents will occupy apartments or mobile homes. These adjustments for taxes from nonresidents and in residential property taxes from new residents provides an estimate of revenues to be expected from new residents and regular businesses serving them. Revenues expected from the energy facility itself must be added before a final post-impact revenue forecast is achieved. Revenues anticipated from the energy facility are calculated by applying current or estimated future tax rates to the actual tax bases created by the energy facility. This is a series of simple calculations depending on the tax structure in use by the local government. These revenues and the revenues generated by new residents and existing service businesses are added to the baseline revenue forecast to obtain the post-impact revenue forecast. ## Post-Impact Expenditure Forecast The Post-Impact Expenditure Forecast is obtained by multiplying the increased expenditure associated with an increase in population times the increase in population due to the energy facility impact and adding this estimate of increased expenditures to the baseline expenditure forecast. Because the impacts of the energy facility and its associated population on revenues and expenditures may differ, it is unlikely that forecast postimpact revenues and expenditures will be equal to one another. ## Net Fiscal Impact The net fiscal impact forecast is made by subtracting forecast post-impact revenues from forecast post-impact expenditures. The net fiscal impact may be either positive or negative and in many cases it will be negative in early years and positive in later years. ## SUMMARY CEIP Impact Model Forecasts are simple. Each step must be understood by users, however, to be sure that unique local conditions are taken into account and modifications made where necessary to improve the forecasts. The most important steps to pay attention to include (1) allocation of employees to different areas around the energy facility depending on commuting distances and existing population concentrations, (2) the estimation of secondary impacts from multipliers, (3) the adjustment based on a comparison of local and national employee/population ratios and the employment of the unemployed to determine the number of jobs to be filled by new residents, and (4) the lags and adjustments in collection of the residential property tax from new residents or the energy facility. The assumptions used are based on previous impact analyses; but if something regarding one of these factors in a local government area is unique, the forecasts could be in error unless an adjustment based on local knowledge is made. Any of the assumptions can be easily modified so that the difference made in final forecasts can be easily identified. With cooperation among officials who possess local knowledge, energy facility company officials and OCZM personnel familiar with the impacts of energy facilities and other economic developments, it should be possible to make reasonably accurate forecasts with the CEIP Impact Model. ## III. CRITERIA FOR ALTERNATIVE MODELS FOR ENERGY FACILITY IMPACT FORECASTS Many governments have developed their own forecasting models which may potentially be used for energy facility forecasts. These models may be an acceptable alternative to use of the OCZM-developed model. In general, alternative models should meet the following conditions: - (1) Take into account all significant revenues including state shared taxes, formula grants, federal revenue sharing, and other federal formula grants such as aid to federally impacted school districts. Borrowing and project-related grants may be excluded as long as expenditures from borrowed funds or grant-financed projects are excluded. - (2) Expenditures should be forecast on a per capita marginal cost basis, if possible. Marginal costs, however, should not generally exceed average costs. Debt repayment should be considered an expenditure. - (3) The model must include an allocation of new employment and population around the energy facility location in relation to existing population concentrations and expected commuting patterns unless the applying local government is so large as to include all potential employees. - (4) Multipliers for induced employment and population should have an empirical base taking into account different impacts in areas of different size. Empirical bases should rely primarily on actual impact studies and not just crosssectional analyses. Both direct and indirect population and employment impacts are lower in actual impact analyses than forecasts with cross-sectional data based multipliers. - (5) The model must be able to forecast (a) baseline expenditures and revenues, (b) population impact of the energy facility, (c) revenues with the facility, and (d) expenditures with the facility. - (6) All data and assumptions upon which the model is based must be available to OCZM technical assistance personnel as requested. The quickest and easiest way to have an alternative model accepted for forecasting purposes is to simultaneously provide data necessary for calculating the CEIP Impact Model, with an accompanying explanation of how the models differ. ## **APPENDIX A** LIST OF PARTICIPATING STATES IN THE FEDERAL-STATE COOPERATIVE PROGRAM FOR LOCAL POPULATION ESTIMATES, ALONG WITH OFFICIAL AGENCIES AND OFFICIAL CONTACTS AND/OR PARTICIPANTS: NOVEMBER 1975 (An asterisk (*) denotes agencies which contributed to the estimates previously published in <u>Current Population Reports</u>, Series P-28. A dagger (-) denotes key technical person) | State | Agency | Steto | Agency | |------------------
--|-----------------------|---| | labana | Alabama Development Office | District of | Office of Planning and Management | | | 508 State Office Building | Columbin ¹ | Executive Office of the Mayor | | | Montgomery, Alabama 36104 | | Room 113 - District Building | | | Mr. R.C. Banberg, Director | 1 | 14th and E Streets, N.W. | | | 1 | | Washington, D.C. 20004 | | | *Center for Business and Economic Research | 1 | tir. Gangu Ahujs | | | Graduate School of Business | | | | | University of Alabama | Florida | *Division of Population Studies | | | University, Alabama 35486 | ì | Bureau of Economic and Business Research | | | Mr. Edward Rutledge, Director | į. | College of Business Administration | | | "Ms. Carolya Sanyer | į. | University of Florida | | | 1 | | Gainesville, Florida 32611 | | lieska * | Division of Policy Development and Planning | | Dr. Carter C. Osterbind, Director | | | Office of the Governor | 1 | Dr. Madelyn Lockhart | | | Pouch AD | 1 | 'Mr. Jack D. Doolittle | | | Junesu, Alaska 99811 | ì | Mr. Bart Levin | | | Mr. Robert S. Needen, Director | ł | | | | wit wooder at magnam, Director | Georgia | *Office of Planning and Sudges | | * | Research and Analysis Section | | 270 Washington Street, S.W. | | | Alaska Department of Labor | 1 | Atlanta, Georgia 30334 | | | Box 3+7000 | 1 | Hr. James T. McIntyre, Jr., Director | | | Juneau, Alaska 99301 | i | Kr. Richard S. Cobb. Deputy Director | | | *Mr. David L. Gale | | thr. Rosald G. Crose, Planner, State Data Center | | Arisena | *Department of Economic Security | Pa44 | | | | Bureau of Planning | Hawaii | "Department of Planning and Economic Development | | • | Post office Box 6123 | i | Post Office Box 2359 | | | Phoenix, Arizona 85005 | 1 | Honolulu, Hawail 96804 | | | Mr. Jack Eronenfeld, Demographic Specialist | } | 'Mr. Robert C. Schmitt, State Statisticias | | | | | *State Department of Houlth | | Arkensan | *Industrial Research and Extension Center | | Post Office Box 3378 | | | University of Arkenses | í | Honolulu, Hawaii 56801 | | | Post Office Box 3017 | ı | filr. Shigeo Tengan | | | Little Rock, Arkansas 72203 | - 1 | | | | Dr. Barton A. Westerlund, Director | Idaho | *Dureau of Vital Statistics | | | *Dr. Forrest Pollard, Head of Population and | 1. | idaho Department of Health and Welfare | | | Kanpover Studies | ł | Statehouse | | | for, Jong No Rhee | i | Boise, Idaho 83720 | | California | *Population Research Unit | 1 | 'Ms. Jamet Wick, Chief | | *********** | State Department of Finance | | | | | 1025 P Street | Illinois | *Illinois Department of Public Health | | | Sacramento, California 95816 | | 535 West Jefferson Street | | | 'Dr. Valter P. Hollmann, Chief | I | Springfield, Illinois 62761 | | | *Er. Solson Rasnussen, Denographer | 1 | 'Mr. Clyde A. Bridger, Chief Statistician | | | Ma. Isabell Hambright, Demographer | Indian | | | | 2 manage adamata bitat | Indiana | *Indiana State Board of Health | | Culoradu | Colorado Division of Planning | 1 | 1330 West Michigan Street | | | Room 670 | 1 | Indianapolis, Indiana 46206 | | | Columbine Building | | Dr. William T. Payater, State Health Commissioner | | | 1845 Sherman Street | l | 'Vr. Recert A. Calhoum. Director of Public | | 4 | Denver, Colorado 80203 | I | Health Statistics | | | Mr. Philip H. Schnuck, Director | love | | | | 'Kr. Arthur Thompson | 1 | "Records and Statistics Division | | | Mr. Lee Whitney | 1 | lown State Health Dopartment - State Office Building | | | 1Mr. Kenneth Prince | 1 | Des Maters Town 60010 | | | | 1 | Des Moines, lova 50319 | | Connecticut | "Vital Statistics Section | i | THE Steve Boal | | | State Sealth Department | j | Ms. Hazel Shearer | | | 79 Ein Street | ı | inse used puestes | | | Eartford, Connectious 05115 | 200504 | Tanana Danasanana ad Sarris a | | | Dr. Dougise 5. Lloyd, Commissioner | 1 | Eshes Department of Economic Development Division of Planning | | | Mr. Hal Burdo | 1 | | | | 'Mr. Robert O'tell | 1 | 1258-Y State Office Building
Topeks, Kenses 66612 | | D. Lamano | | 1 | Mr. John P. Helligan, Director | | Dolevero | *State Planning Office | | t' univided' hildsfol | | | Thomas Collins Swilding | 1 | Phopulation Research Laboratory | | | 530 South DiPont Highesy | | Escas State University | | | Dover, Deleasee 19901 | | Kanhattan, Kansas 66506 | | | Mr. Devid R. Reifer, Director | ı | 'br. Cornelia Flora | | | | | | The District of Columbia is participating on an informal basis. ## **APPENDIX A—Continued** LIST OF PARTICIPATING STATES IN THE FEDERAL-STATE COOPERATIVE PROGRAM FOR LOCAL POPULATION ESTIMATES, ALONG WITH OFFICIAL AGENCIES AND OFFICIAL CONTACTS AND/OR PARTICIPANTS: NOVEMBER 1975—Continued (As asterisk (*) denotes agencies which contributed to the estimates previously published in <u>Current Population Reports</u>, Series P-26. A dagger (*) denotes key technical person) | State | Agency | State | Agency | | | |----------------|--|----------------|---|--|--| | entucky | *Urban Studies Center | Nebraska | Nebruska Department of Economic Development | | | | • | University of Louisville | 1 | Post Office Box 94666 | | | | | Gardencourt Campus | 1 . | State Capitol | | | | | Alta Vists Road | | Lincoln, Nebraska 68509 | | | | | Louisville, Nentucky 40205 | 1 | Mr. Ronald J. Mertens, Director | | | | | 'Dr. Mike Spar | | *Bureau of Cusinoss Research | | | | ouisiana | *Rosearch Division | | The University of Nebraska | | | | cont a 1 su s | College of Administration and Business | · | Lincoln, Nebraska 68508 | | | | | Louisiana Tech University | | 'Ms. Vicki Stepp | | | | | Ruston, Louisians 71270 | 1 | | | | | | Dr. Don C. Vilcox, Director | Nevada | *Bureau of Business and Economic Research | | | | | 'Ms. Barbars Denton | | University of Nevada . | | | | | 1 | | Reno, Nevada 89507 | | | | laine | | | Dr. Robert C. Weens, Jr., Director | | | | #3 D4 | *Research and Vital Records State Department of Health and Welfare | | Dr. Shih-fen Chu | | | | | Augusta, Maine 04330 | Į. | 'Mr. Samuel Males | | | | | 'Mr. Dale Welch, Director | New Hampshire | .orgina of gamestanding programs | | | | | are one seren, pricetor | "dea umbautis | *Office of Comprehensive Planning Executive Department | | | | | | 1 | State House Annex | | | | laryland | Maryland Center for Health Statistics | ì | Concord, New Hampshire 03391 | | | | | State Department of Health and Fantal Hygiene | 1 | Mr. James Manoch, Planning Director | | | | | O'Connor Building 201 West Preston Street | 1 | 'Vr. Thosas Duffy | | | | | Baltimore, Maryland 21201 | | | | | | | rar, Ira Rosenvaike | New Jersey | *Office of Business Economies | | | | | Mr. Luther Frantz, Jr. |) | Division of Planning and Research | | | | | | | Department of Labor and Industry | | | | | | | Post Office Box 845 | | | | inssechuse tts | *Dureau of Research and Statistics | 1 | Trenton, New Jersey 08625 | | | | | Massachusetts Department of Commerce and | | 'Mr. Henry A. Watson | | | | | Development State Office Suilding | | Na. Shirly Goets | | | | | 100 Cembridge Street | New Mexico | | | | | | Boston, Nassachusetts 02202 | UCA MEXICO | *Bureau of Business and Economic Research The University of New Kexico | | | | | 'Mr. William P. Tsaffaram, Director | 1 | Albuquerque, New Mexico 87131 | | | | | | \ | Dr. Lee B. Zink, Director | | | | Kichigan | *Office of the Budget | ì | Sr. Larry Adcock | | | | | Lowis Casa Building | 1 | Mr. James McCormigh | | | | | Lensing, Michigan 48913 | | | | | | | Mr. Tos Clay, Director | New York | Office of Biostatistics | | | | | *Mr. Bill O'Hare | 1 | New York State Department of Health | | | | | | 1 | 3rd Floor Tower Building | | | | finnenote | *Winnesota State Planning | } | Empire State Plaza | | | | | 101 Capitol Square Building | į | Albany, New York 12237 | | | | | 530 Cedar Street | 1 | Er. Vito Logrillo, Director | | | | | St. Paul, Minnesota 55101 | i i | inr. Sid Prosad, Senior Research Scientist | | | | | *Ms. Hazel Reinhardt | ł | Mr. Richard Krueger, Blostatistician | | | | | | North Carolina | | | | | (ississippi | *Pepartment of Sociology | POPER CAPOLINA | *Office of State Planning North Carolina Department of Administration | | | | | Mississippi State University | 1 | 116 West Jones Street | | | | | Post Office Brawer C | 1 | Roleigh, North Carolina 27603 | | | | | State College, Mississippi 39782 | | Br. Lynn R. Muchmore, State Planning Officer | | | | | Dr. John Saunders, Department Head | | Kr. Alton Skinner, III, Asst, State Planning | | | | | 'Ms. Ellen Gryant, Assistant Soctologist | | Officer for Research | | | | | 1Ms, Easly Chaney | | 'Ms. Francine J. Ewing | | | | | 1 | 1 | | | | | liscouri . | *State Planning and Analysis Division | North Dakota | *Division of Health Statistics | | | | | Office of Administration | 1 | Department of Hemith | | | | | State Capitol | ļ | 17th Floor | | | | | Post Office Box 809 | l l | Capitol Building | | | | | Jefferson City, Missouri 65101 | 1 | Bismarck, North Dekota 58505 | | | | | TMF, Michael Boxberger | 1 | 'Mr. Richard W. Blair, Director | | | | | · · | Ohio | *Numan Resource Development Divison | | | | Mont en a | *Buresu of Susiness and Economic Research | 1 | Suresu of Research and Analysis | | | | | University of Montana | i | Department of Economic and Community Developmen | | | | • | Missouls, Montana 59801 | 1 | 30 E. Broad Street - State Office Tower | | | | | Ms. Maxine C. Johnson, Director | 1 | Columbus, Ohio 43215 | | | | | !Na. Susan Solig Wallwork | 1 | TMs. Arlene Els | | | ## **APPENDIX A—Continued** LIST OF PARTICIPATING STATES IN THE FEDERAL-STATE COOPERATIVE PROGRAM FOR LOCAL POPULATION ESTIMATES, ALONG WITH OFFICIAL AGENCIES AND OFFICIAL CONTACTS AND/OR PARTICIPANTS: NOVEMBER 1975—Continued (An asterisk (*) denotes
agencies which contributed to the estimates previously published in <u>Current Population Reports</u>, Series P-26. A dagger (*) denotes key technical person) | State | Agency | State | Agency | | | |----------------|--|---------------|---|--|--| | Alshone | *Research and Planning Division | Ctah | Afficial Processing of Francisco | | | | | Oklahoma Employment Security Commission | 1 01311 | *Ctan Department of Employment Security 174 Secial Hall Avenue | | | | | 310 Will Rogers Building | | Selt Lake City, Utah 84111 | | | | | Oklahoma City, Oklahoma 73105 | | Mr. Richard J. Arnold, Director of Reports and | | | | | Mr. W.J. Bownen, Chief | | Analysis | | | | | Mr. William Hunter, Assistant Chief | ľ | 'Mr. Kenneth Jensen | | | | | 'Mr. Roger Jacks | | ar wemeta yenden | | | | | | Vermont | Division of Public Health Statistics | | | | SLABOU | Center for Population Research and Census | | State Department of Health | | | | | Portland State University - Box 751 | | 115 Colchester Avenue | | | | | Portland, Oregon 97207 | | Burlington, Vermont 05401 | | | | | fDr. James Weiss | | 'Mr. Walter L. Cooley, Chief | | | | ennsylvenía | *Office of State Planning and Development | | | | | | | Post Office Box 1323 | Virginia | *Taylor Murphy Institute | | | | | Barrisburg, Pennsylvania 17120 | } | Graduate School of Business Administration | | | | • | Mr. A. Edward Simon, Executive Director | | University of Virginia | | | | • | *Ms. Natualie Sato | j | Post Office Box 3430 | | | | | 1 | | Charlottesville, Virginia 22903 | | | | Puerto Rico | Puerso Rico Planning Board | 1 | Dr. Charles O. Meiburg, Director | | | | | Einilles Government Center | 1 | *Dr. William J. Serow *Dr. Julie Martin | | | | | North Building, De Diego Avenue | 1 | . Dr. Saria Milia | | | | | Post Office Box 9447 | Washington | Population Studies Division | | | | | Santurce, Puerto Rico 00908 | answing tou | | | | | | 'Ms. Carpen G. Garcia de Laguerre | | Office of Progrom Planning and Fiscal Management
House Office Suilding | | | | | Ms. Edna Schroder, Consultant | | Olympin, Washington 98504 | | | | | | - | 'Mr. John R. Walker, Chief | | | | mode Island | *Statewide Planning Program | 1 | *Dr. Donald B. Pittenger, Asst. Chief | | | | | Rone 201 | i i | *Ms. Theresa Love | | | | | 265 Melrose Street | - { | | | | | | Providence, Rhode Island 02907 | West Virginia | *Office of Research and Development | | | | | Mr. Daniel Varin, Chief | 1 | Center for Extension and Continuing Education | | | | | *Rr. Chester Symanski | · I | West Virginia University | | | | South Carolina | | · I | Norgantown, West Virginia 26505 | | | | POORE CELOTIUS | *Division of Research and Statistical Services | 1 | 'Dr. Leonard M. Sizer | | | | | South Carolina Budget and Control Board
Post Office Box 11038 | l l | | | | | | | i | Federal-State Relations | | | | | Columbia, South Carolina 29211
Mr. Thomas P. Evans, Director | 1 | Office of the Governor | | | | | 'Mr. Bobby Bowers | i | Charleston, West Virginia 25305 | | | | • | 'Ms. Jackie Frishman | į. | Mr. Robert V. Barill, Deputy Director | | | | | | Wisconsin | *Bureau of Health Statistics | | | | outh Dakota | *Public Health Statistics | -1315111 | State Division of Health | | | | | State Department of Health | Į | Post Office Box 309 | | | | | Pierre, South Dakota 57501 | 1 | Eadison, Wisconsin 33701 | | | | | Mr. William Johnson, Director | 1 | Dr. Raymond D. Nashold, Director | | | | • | *Nr. Charles Sisk | 1 | fMr. Henry Krebs, Asst. Chief, Statistical | | | | | Mr. Edward Kehrwald | | Services Section | | | | | 1.2 | j | *Ms. Nargaret Hollerman | | | | 41041100 | *Tennessee State Planning Office | l | | | | | | Division of State Planning | Wyoming | *Division of Business and Ecunomic Research | | | | | 660 Capitol Hill Building | | College of Commerce and Industry | | | | | 301 Seventh Avenue, North | I | University of Myoming | | | | | Kashville, Tennessee 37219 | i | University Station - Box 3925 | | | | | Mr. Siles C. Schoening, Director | | Laranie, byoning 82070 | | | | | TMs. Annie Voore | 1 | Dr. Roger Hayen, Director | | | | exec | Market and the second s | Ì | *Mr. Fred Doll | | | | ~ | Division of Planning Coordination | 1 | | | | | | Office of the Governor | ł | Administrator of Research and Statistics Divisio | | | | | | | Department of Administration and Fiscal Control | | | | | Austin, Texas 78711 | { | Room 317 - Capitol Building | | | | | *Me. Joy Travia | | Cheyenne, byoming 82001 | | | | | I was and resain | 1 | Mr. Phil Kiner | | | #### ESTIMATES PUBLISHED IN SERIES P.26 REPORTS SINCE 1970 (Reports issued under the Federal-State Cooperative Program for Population Estimates, jointly prepared by the Bureau of the Census and designated State agencies) | 1 | Report No. | | | • • | Report No. | | | |--------|---------------------------------|---------------------------------|---------------------------------|--------|---------------------------------|---------------------------------|---------------------------| | State | 1973 and
provisional
1974 | 1972 and
provisional
1973 | 1971 and
provisional
1972 | State | 1973 and
provisional
1974 | 1972 and
provisional
1973 | 1971 and provisional 1972 | | A1a | 125 | 76 | 48 | Nont | 109 | 53 | 19 | | Alaska | (1) | (*) | (3) | Nebr | 104 | 58 | 2.5 | | Ariz | 94 | 50 | *11 | Nev | 117 | 67 | 25 | | Ark | 115 | 70 | 33 | N. H | 107 | . 52 | 14 | | Calif | 119 | (²) | *41 | N. J | 135 | 82 | 20 | | Co1o | 103 | 62 | 17 | N. Mex | 123 | 85 | (3) | | Conn | 116 | 79 | (3) | N. Y | (¹) | (²) | (2) | | Del | 111 | 57 | 15 | х. с | 114 | 68 | 4- | | Fla | 130 | 90 | 46 | N. Dak | 102 | 60 | (3) | | Ga | . 124 | 92 | 37 | Ohio | 122 | 80 | *40 | | Hawaii | 105 | 56 | 23 | Okla | 112 | 63 | 2. | | ldaho | 106 | 51 | 9 | Orcg | (1) | 74 | (3 | | 111 | 128 | 78 | 27 | Pa | 136 | 93 | +3 | | Ind | 113 | 75 | 14 | R. I | 98 | 65 | 2 | | lowa | 138 | 72 | 31 | s. c | 108 | 71 | 3 | | Kans | 129 | 64 | . 43 | S. Dak | 101 | 61 | +1: | | Ky | 120 | 84 | 35 | Tenn | 133 | 83 | 4 | | la | 97 | 54 | *16 | Tex | (1) | (2) | (3 | | Maine | 99 | 59 | 28 | Utah | 96 | - 55 | 1 | | Nd | (1) | (2) | (³) | Vt | 95 | 49 | *1: | | Kass | 137 | 91 | 42 | Va | 127 | 88 | 3 | | Mich | 110 | 69 | 32 | Wash | (¹) | 66 | (3 | | Kinn | 132 | 87 | 38 | W. Va | 121 | 89 | 3 | | Miss | 131 | 86 | (3) | Wis | 126 | 81 | 2 | | No | 134 | 77 | 45 | wyo | 100 | 73 | (3 | ^{*}First year only. For second year, see Series P-25, No. 517. ¹County or county equivalent estimates for 1973 and provisional 1974 are published in Series P-25 for the following States: Maryland, No. 596; Washington, No. 597; New York, No. 599; Oregon, No. 602; Alaska, No. 604; and Texas, No. 609. ²County or county equivalent estimates for 1972 and provisional 1973 are published in Series P-25 for the following States: New York, No. 527; Maryland, No. 530; Alaska, No. 531; California, No. 532; and Texas, No. 535. ²County estimates for this State for 1971 and provisional 1972 are published in Series P-25, No. 517. #### APPENDIX B ## BUREAUS OF BUSINESS AND ECONOMIC RESEARCH IN COASTAL STATES #### **ALABAMA** CENTER FOR BUSINESS AND ECONOMIC RESEARCH Graduate School of Business The University of Alabama Box AK University, Alabama 35486 205/348-6191 ## ALASKA INSTITUTE OF SOCIAL, ECONOMIC AND GOVERNMENT RESEARCH University of Alaska Pairbanks, Alaska 99701 907/479-7436 ## CALIFORNIA INSTITUTE OF BUSINESS AND ECONOMIC RESEARCH 156 Barrows Hall University of California, Berkeley Berkeley, California 94720 415/642-1922 BUREAU OF BUSINESS RESEARCH AND SERVICE School of Business and Administrative Sciences California State University, Fresno Fresno, California 93740 209/487-2068 DIVISION OF RESEARCH University of Southern California Bridge Hall Los Angeles, California 90007 213/746-5202 BUREAU OF
BUSINESS AND ECONOMIC RESEARCH School of Business Administration, BA-410 San Diego State University San Diego, California 92182 714/286-6838 #### APPENDIX B (continued) ## FLORIDA BUREAU OF ECONOMIC AND BUSINESS RESEARCH University of Florida 221 Matherly Hall Gainesville, Florida 32611 904/392-0171 ## GEORGIA DIVISION OF RESEARCH College of Business University of Georgia Athens, Georgia 30602 404/542-4085 OFFICE OF RESEARCH AND SERVICES School of Business Administration Georgia State University Atlanta, Georgia 30303 404/658-4256 ## ILLINOIS CENTER FOR RESEARCH AND SERVICE College of Business and Administration Southern Illinois University Carbondale, Illinois 62901 618/453-3328 BUREAU OF ECONOMIC AND BUSINESS RESEARCH 408 David Kinley Hall University of Illinois Urbana, Illinois 61801 217/333-2330 ## INDIANA DIVISION OF RESEARCH Graduate School of Business Indiana University Bloomington, Indiana 47401 812/337-5507 # LOUISIANA DIVISION OF RESEARCH College of Business Administration Louisiana State University P. O. Box 17350-A Baton Rouge, Louisiana 70803 504/388-5830 DIVISION OF ADMINISTRATION AND BUSINESS RESEARCH P. O. Box 5796 Louisiana Tech University Ruston, Louisiana 71270 318/257-3701 DIVISION OF BUSINESS AND ECONOMIC RESEARCH College of Business Administration University of New Orleans Lakefront New Orleans, Louisiana 70122 504/288-3161, ext. 248 # MARYLAND BUREAU OF BUSINESS AND ECONOMIC RESEARCH University of Maryland Room 4118, Tydings Building College Park, Maryland 20742 301/454-2303 ### **MASS**ACHUSETTS DIVISION OF RESEARCH Harvard Graduate School of Business Administration 230 Morgan, Soldiers Field Boston, Massachusetts 02163 617/495-6334 BUREAU OF BUSINESS AND ECONOMIC RESEARCH Northeastern University Boston, Massachusetts 02115 617/437-3252 # MICHIGAN . DIVISION OF RESEARCH Graduate School of Business Administration The University of Michigan Ann Arbor, Michigan 48109 313/764-1366 BUREAU OF BUSINESS AND ECONOMIC RESEARCH Division of Research 5-J Berkey Hall Michigan State University East Lansing, Michigan 48824 517/355-7560 # MINNESOTA BUREAU OF BUSINESS AND ECONOMIC RESEARCH 114 Social Sciences Building University of Minnesota, Duluth Duluth, Minnesota 55810 218/726-7298 BUREAU OF BUSINESS AND ECONOMIC RESEARCH School of Business Mankato State College Mankato, Minnesota 56001 507/389-2711 BUREAU OF BUSINESS AND ECONOMIC RESEARCH Mankato State University Mankato, Minnesota 56001 507/389-1623 # MISSISSIPPI BUREAU OF BUSINESS RESEARCH University of Southern Mississippi Southern Station, Box 94 Hattiesburg, Mississippi 39401 601/266-7247 DIVISION OF BUSINESS RESEARCH College of Business and Industry Mississippi State University P. O. Drawer 5288 Mississippi State, Mississippi 39762 601/325-5244 BUREAU OF BUSINESS AND ECONOMIC RESEARCH University of Mississippi University, Mississippi 38677 601/232-7481 # NEW JERSEY BUREAU OF ECONOMIC RESEARCH Rutgers University The State University of New Jersey New Brunswick, New Jersey 08903 201/932-7451 # NEW YORK BUSINESS RESEARCH INSTITUTE St. John's University College of Business Administration Jamaica, New York 11439 212/969-8000, ext. 480 MANAGEMENT RESEARCH CENTER School of Management Syracuse University 129 College Place Syracuse, New York 13210 315/423-2052 # NORTH CAROLINA ECONOMIC DEVELOPMENT CENTER School of Business Western Carolina University Cullowhee, North Carolina 28723 704/293-7492 BUREAU OF ECONOMIC AND BUSINESS RESEARCH College of Business Appalachian State University Boone, North Carolina 28608 704/262-2148 INSTITUTE OF APPLIED BUSINESS AND ECONOMIC RESEARCH Graduate School of Business Administration University of North Carolina Chapel Hill, North Carolina 27514 919/933-8301, ext. 225 or 221 # OHIO CENTER FOR MANAGEMENT DEVELOPMENT AND RESEARCH Case Western Reserve University School of Management Cleveland, Ohio 44106 216/368-2042 CENTER FOR BUSINESS AND ECONOMIC RESEARCH The Ohio State University 1775 College Road Columbus, Ohio 43210 614/422-5967 CENTER FOR BUSINESS AND ECONOMIC RESEARCH Graduate School of Business Administration Kent State University Kent, Ohio 44242 216/672-2093 # OREGON BUREAU OF BUSINESS RESEARCH 140 Gilbert Hall University of Oregon Eugene, Oregon 97403 503/686-3376 ### PENNSYLVANIA BUREAU OF ECONOMIC AND BUSINESS RESEARCH Temple University School of Business Administration Philadelphia, Pennsylvania 19122 215/787-8101 or 8102 BUREAU OF RESEARCH AND COMMUNITY SERVICES School of Business and Administration Duquesne University Pittsburgh, Pennsylvania 15219 412/434-6229 CENTER FOR RESEARCH College of Business Administration 801 Business Administration Building The Pennsylvania State University University Park, Pennsylvania 16802 814/865-7669 or 7660 # SOUTH CAROLINA BUREAU OF BUSINESS AND ECONOMIC RESEARCH College of Business Administration University of South Carolina Columbia, South Carolina 29208 803/777-2510 # TEXAS BUREAU OF BUSINESS RESEARCH P. O. Box 7459 University Station The University of Texas at Austin Austin, Texas 78712 512/471-1616 # VIRGINIA TAYLOE MURPHY INSTITUTE The Colgate Darden Graduate School of Business Administration University of Virginia P. O. Box 6550 Charlottesville, Virginia 22906 804/924-7451 # WASHINGTON OFFICE OF FACULTY RESEARCH AND PUBLICATIONS Mackenzie Hall, DJ-10 University of Washington Seattle, Washington 98195 206/543-4598 or 4599 # WISCONSIN BUREAU OF BUSINESS RESEARCH AND SERVICE 110 Commerce Building University of Wisconsin 1155 Observatory Drive Madison, Wisconsin 53706 608/262-1550 #### APPENDIX C # BUREAUS OF GOVERNMENTAL RESEARCH # -Local and State Agencies # Alabama # MONTGOMERY Alabama League of Municipalities (1935) 555 Adams Ave. 35104 Telephone: (205) 263-1042 John F. Watkins, Executive Director Dan O'Dowe, Jr., Pub. Mgr. D. N. Hamilton, Gen. Counsel Alahama Chamber of Commerce Research Division P. O. Bex 76 36101 Telephone: (205) 262-7319 Harry C. McMillan, Director State of Alabama Legislative Reference Service 36104 Telephone: '205) 269-6438 Louis G. Greene, Director Program Development Office 364 Dexter Avenue 36104 Telephone: (205) 269-7171 J. E. Mitchell, Jr., Director #### UNIVERSITY University of Alabama 35486 Bureau of Public Administration (1938) Telephone: (205) 348-5980 Robert B. Highsaw, Director L. Franklin Blitz Coleman B. Ransone William H. Stewart James D. Thomas # Alaska ### JUNEAU State of Alaska Local Affairs Agency Peuch AB 99801 Telephone: 586-6221 Byron I. Mallott, Director # California ### BERKELEY University of California 94704 Graduate School of Public Affairs Telephone: (415) 642-4670 2607 Hearst Aaron Wildavsky, Dean Institute of Governmental Studies Institute of Governmental Studies Telephone: (415) 642-6702 Eugene C. Lee, Director *Stanley Scott, Assistant Director *Barbara J. Hudson, Librarian Phyllis Barusch Ora Huth Dorothy Tompkins Institute of Eusiness & Economic Research, Northern Section (1941) 156 Barrows Hall Joseph W. Garbarino, Director Institute of Urban & Regional Development Center of Real Estate and Urban Economics 200 Strahams Momerical Hall, 24720 260 Stephens Memorial Hall 94720 Telephone: (415) 642-2491 Waliace F. Smith, Acting Chairman Western Governmental Research Association (1937) 109 Moses Hall University of California 94720 Telephone: (415) 642-6722 Kenneth Hunter, President *Stanley Scott, Executive Secretary # BURLINGAME Governmental Research Council of San Mateo County 1299 Bayshore Hwy, #217 94010 Telephone: (415) 343-9100 Robert D. Harrison, Jr., Executive Director ### DAVIS University of California, Davis, Institute of Governmental Affairs 95515 Telephone: (916) 752-2042 Lloyd D. Musolf, Director Richard W. Gable, Associate Director Nedjelko Suljak, Librarian # LONG BEACH City of Long Beach 90307 Budget & Research Division Telephone: (213) 425-9041 Randall J. Verrue, Director *Roger Keast, Senior Analyst #### LOS ANGELES Bureau of Municipal Research (1931) 117 West 9th Street 90015 Telephone: (213) MAdison 7-3383 *James O. Stevenson. Director California Taxpayers Association (1926) 659 Mobil Building 612 South Flower Street 90017 Telephone: (213) MAdison 7-9001 *J. Roy Holland, Regional Director of Local Affairs City of Los Angeles City Administrative Office (1951) 380 City Hall 90012 Telephone: :2131 MAdison 4-2121 *C. Erwin Piper, City Administrative Officer City Council Office of Legislative Analyst (1949) 470 City Hall 90012 Telephone: (213) MAdison 4-5211 A. C. Estes, Chief Legislative Analyst *Alfred Purvis, Legislative Analyst Kenneth G. Spiker, Legislative Analyst County of Los Angeles Chief Administrative Office Management Services Division Telephone: (213) MAdison 5-3611 Douglas R. Steele, Chief League of California Cities (1898) Los Angeles Office 702 Hilton Center Telephone: (213) MAdison 4-4934 Murray Brown, Editor, Western City Magazine Los Angeles Chamber of Commerce (1888) 404 South Bixel Street 90054 Telephone: (213) 422-4010 Vincent A. Bordelon, Manager, Government Relations Department (Washington Office) 1000 Vermont Avenue, N.W. Washington, D.C. 20005 Eleanor Buhler, Administrator Municipal Reference Library City Hall 90012 Room 1003 Telephone: (213) 485-3791 Wilma J. Dewey Property Owners Tax Association of California (1931) 132 West First Street, Room 228 Telephone: (213) MAdison 9-3366 Melvin Horton, Executive Vice-President Milton Harker, Research Director Southern California Research Council 1600 Campus Road 90041 Telephone: (213) 255-5151 Joseph E. Haring, Research Coordinator Town Hall (1937) Biltmore Hotel, 515 South Olive St. 90013 Telephone: (213) MAdison 8-8141 Rolland D. Headlee, Executive Director University of California at Los Angeles Institute of Government and Public Affairs 405 Hilgard Avenue 90024 Telephone: (213) 825-7117 Werner Z. Hirsch, Director Graduate School of Business Administration Housing, Real Estate & Urban Land Studies Program Telephone: (213) 825-3977 Fred E. Case, Director Department of Political Science Winston W. Crouch Public Affairs
Service/Local Telephone: (213) 825-1942 *Dorothy V. Wells, Local Documents Librarian University of Southern California von KleinSmid Center of International & Public Affairs 90007 Telephone: (213) 746-2241 Henry Reining, Jr., Dean #### MARTINEZ Contra Costa Taxpayers' Association, Inc. (1929) P.O. Box 72, 820 Main St. 94553 Telephone: (415) 223-5610 James J. Carroll, Executive Vice-President # OAKLAND Alameda County Taxpayers Association, Inc. 1404 Franklin Street 94612 Telephone: (415) 393-3341 *Edouard B. McKnight, Executive Vice-President Bert Maze, Field Representative #### SACRAMENTO California Farm Bureau Federation Public Affairs Division Room 531, 11th & L Bldg. 95814 Telephone: (916) 446-4647 J. A. Janelli, Governmental Affairs Specialist California Retailers Association 1127 Eleventh Street 95314 Telephone: (916) 443-1975 *Leslie D. Howe. Vice-President, Governmental Affairs California Chamber of Commerce 455 Capitol Mull 95014 Telephone: (916) 444-6670 John T. Hay, Executive Vice President Economic Development & Research Department Jack Smith, Director Insurance Department W. Edward Couch, Director California Taxpayers Association 11th & L Building, Suite 713 95814 Telephone: (916) 443-8163 *Robert C. Brown, Executive Vice President Arlen K. Bean, Director of Research Richard P. Simpson, Regional Director, Local Affairs League of California Cities 1108 "O" Street 95814 Telephone: (916) 444-5790 Richard Carpenter, Executive Director & General Counsel State of California Council on Intergovernmental Relations 1400 Tenth Street 95814 Telephone: (916) 445-7366 James A. R. Johnson. Executive Director Department of Finance 1145 State Capitol 95314 Telephone: (916) 445-4141 Verne Orr. Director Dept. of Housing and Community Development 1120 O Street. Room 3344 95814 Telephone: (916) 445-4775 Donald F. Pinkerton, Director Department of Human Resources Development 800 Capitol Mall 95814 *Norman Blacher, Deputy Director Legislative Budget Committee 306 State Capitol 95814 Telephone: (916) 445-4556 A. Alan Post, Legislative Analyst Legislative Counsel Bureau (1913) 3021 State Capitol 95614 Telephone: (916) 445-2781 George H. Murphy, Legislative Counsel State Board of Equalization 1020 N. Street 95814 Telephone: (916) 445-3956 Herbert F. Freeman, Executive Secretary State Library Library & Courte Publisher, 1984 State Library Library & Courts Building 95814 Telephone: (916) 445-2585 (Mrs.) Carma R. Leigh, Librarian # SAN DIEGO San Diego State College 22115 Bureau of Eusiness & Economic Research (1937) John McFall, Director Public Affairs Research Institute 92115 Telephone: (714) 286-6224 W. Richard Bigger, Director San Diego Texpayers Association 1330 U.S. National Bank Building 92101 Telephone: (714) 234-6423 Stanley H. Coombs, Manager Charles E. Stine, Associate Manager # SAN FRANCISCO Civic League of Improvement Clubs and Associations (1995) 859 Flood Building 870 Market Street 94102 Telephone: (415, 781-4480 Augusta G. Haas, Executive Secretary Commonwealth Club of California (1903) Monadnock Arcade, 681 Market Street Telephone: (415) DOuglas 2-4ie:3 Durward S. Riggs, Executive Secretary Michael J. Brassington, Assistant Executive Secretary San Francisco Bay Area Council, Inc. World Trade Center 94111 Telephone: (415) YUKon 1-5405 Stanley E. McCaffrey, President Angelo Siracusa, Vice-President Kenneth Evansco, Director of Research San Francisco Bureau of Governmental Research (1916) 58 Sutter Street 94104 Telephone: (415) 362-8715 *Louis Clisbee, Director San Francisco Chamber of Commerce 400 Montgomery Street 94104 Telephone: (415) 392-4511 W. E. Dauer, Executive Vice-President San Francisco Planning and Urban Renewal Association 126 Post Street 94108 Telephone: (415) SUtter 1-8726 John H. Jacobs, Executive Director Michael L. Fischer, Associate Director #### SANTA ROSA Sonoma County Taxpayers Association (1946) 2403 Professional Dr., Suite 105 Telephone: (707) 542-0442 # **STANFORD** Stanford University The Hoover Institution on War. Revolution and Peace 94305 Telephone: (415) 321-2200 W. Glenn Campbell, Director *Roger A. Freeman. Senior Fellow Thomas L. Glenn, Research Associate ### VENTURA Ventura County Taxpayers Association 1068 East Main Street, Room 210 P. O. Box 818 93001 Telephone: (305) 643-6166 *Daniel J. Montoro, Executive Secretary # Connecticut #### HARTFORD Connecticut Business & Industry Association, Inc. 60 Washington Street 16103 Telephone: (203) 547-1661 # Connecticut Public Expenditure Council, Inc. (1942) 21 Lewis Street 06103. Telephone: (203) 527-3177 *Carter W. Atkins *Robert H. Franklin, Executive Director *Richard W. Lafferty, Director, Municipal Consulting Service *Russell G. Mobley, Director, Membership Field Service *Mark T. Goodrich, Senior Researcher *Durward D. Wakefield, Research Assistat: : *Charles L. Miller, Senior Researcher *Arthur E. Schloss, Senior Researcher Connecticut State Library Legislative Reference Unit 231 Capitol Avenue 06115 Telephone: (203) 566-4544 George Adams, Chief Greater Hartford Chamber of Commerce, Inc. 250 Constitution Piana 96103 Telephone: (203) 525-4451 Research and Governmental Affairs Donaid W. Goodrien, Manager State of Connecticut Rudget Division 34) Capitel Avenue 06115 Telephone: (203) 527-6349 Fred A. Schuckman, Budget Director Maurice C. Wintrode, Assistant Budget Director Frank J. Reilly, Assistant Budget Director Department of Community Affairs 1179 Main Street, P.O. Box 786 06101 Telephone: (203) 566-3318/9 Donald T. Dorsey, Commissioner State Welfare Department (1935) 1000 Asylum Avenue James Morrison, Chief of Welfare Staff Services # INCAN WYARIA Connecticut Conference of Mayors 956 Chapel Street 06510 Telephone: (203) 772-2168 Joel Cogen, Executive Director New Haven Taxpayers Research Council, Inc. (1933) P. O. Box 1784 06507 Telephone: (203) 777-7659 *Francis J. Kelly, Executive Director *Irene E. Trejsner Yale University Department of Political Science H. Bradford Westerfield, Chairman Institute of Social Science . John Perry Miller, Director # STAMFORD Stamford Area Commerce & Industry Association, Inc. Washington Bldg., One Bank Street 66901 Telephone: (203) 348-6246 ohn Mitovitch, Executive Director "Mrs. Pobie Johnston #### STORRS University of Connecticut Institute of Public Service P. O. Box U-14 06263 Telephone: (203)429-3311 Beldon H. Schaffer, Director Edward T. Dowling, Assistant Director George E. Hill Rosaline Levenson George H. Murray Patricia Stuart Myron E. Weiner Institute of Urban Research Telephone: (203) 429-3311, Ext. 883 Morton Tenzer, Director # Delaware #### DOVER Delaware League of Local Governments P.O. Box 484 19901 Telephone: (302) 678-0991 David L. Press, Executive Director State of Delaware Department of Community Affairs and Economic Development Division of Housing 55 The Green 19901 Robert S. Moyer, Director ### NEWARK University of Delaware 19711 Division of Urban Affairs Telephone: (392) 738-2397 C. Harold Brown, Director Peter M. Roes, Assistant Director James L. Cex, Political Scientist Francis X. Tannian, Senior Economist Marvin Brams, Economist Robert A. Wilson, Sociologist # WILMINGTON Committee of 39, Inc. 909 Orange Street 19801 Telephone: (302) 656-0766 Claude Corty, President Delaware State Chamber of Commerce Governmental Affairs Division 1102 West Street 19801 Telephone: (302) 655-7221 Ross E. Anderson, Jr., Executive Vice-President Greater Wilmington Development Council. 300 Delaware Avenue 1980I Telephone: (302) 658-5263 Peter A. Larson, Executive Vice President Robert W. Lang, Administrative Director Robert D. Stoddard, Education Director Stare of Delaware Department of Housing 601 Delaware Avenue 19801 George E. Cunningham, Secretary # **CORAL GABLES** University of Miami 33124 Telephone: (305) 284-5155 *Henry K. Stanford, President ### GAINESVILLE University of Florida 32601 Public Administration Clearing Service Telephone: (904) 332-0279 or (904) 392-0248 Ernest R. Bartley, Director Bureau of Economic & Business Research (1930) 221 Matherly Hall 32601 Carter C. Osterbind, Director ### **JACKSONVILLE** Florida State Chamber of Commerce P. O. Box 8046 32211 Telephone: (904) 724-2400 Ronald S. Spencer, Jr., Executive Vice-President Jacksonville Area Chamber of Commerce Governmental Affairs 604 Hogan Street 32201 Telephone: (904) 353-6161 Richard E. Johnston, Acting Director ### MAMI Greater Miami Chamber of Commerce 1200 Biscayne Boulevard 33132 Telephone: (305) FR 7-4711 Lester Freeman, Executive Vice-President # TALLAHASSEE Florida State University 32306 Institute for Social Research Telephone: (994) 599-2015, 599-4570 Charles M. Grigg, Director E. Lester Levine, Associate Director Florida League of Cities P.O. Box 431 32302 Telephone: (904) 224-8160 Raymond C. Sittig, Executive Director Dwynal B. Pettengill, Director of Research State of Florida Department of Community Affairs 301 Office Plaza 32301 Telephone: (904) 877-3185 M. Athalie Range, Director # TAMPA Florida Taxpayers Association, Inc. (1933) 3439-A W. Kennedy Boulevard 33609 Telephone: (313) 876-4236 R. L. Newman, Jr., E.cecuive Director #### ATHEMS University of Georgia, The 30601 Institute of Government Terrell Hall Telephone: (404) 542-2736 Morris W. H. Collins, Jr., Director *J. D. Weeks, Head, Legal Section Division of Research, College of Business Administration (1928) New College Telephone: (404) 542-1721 W. B. Keeling, Director Institute of Community and Area Development Old College Telephone: (404) 542-3350 Ernest E. Melvin, Director Institute of Higher Education Candler Hall Telephone: (404) 542-3463 Cameron Fincher, Director ### **ATLANTA** Association of County Commissioners of Georgia 205 Forsyth Building 30303 Hill R. Healan, Director Atlanta Chamber of Commerce (1938) Governmental Affairs Department 1301 Commerce Building 30303 Telephone: (404) JAckson 1-0845 Jim King, Director Emory University Department of Political Science Telephone: (404) 377-2411, ext. 7567 Lewis Bowman, Professor Georgia
Municipal Association, Inc. (1934) 501 Fulton Federai Building 30303 Telephone: (404) 688-0472 W. Elmer George, Executive Director Henry J. Wise Marsha Buttram Georgia Chamber of Commerce Governmental Department 1200 Commerce Building Telephone: (404) 524-8481 Glenn Anthony, Manager Georgia State Library 301 Judicial Building 40 Capitol Square, S.W. 30334 Telephone: (404) 656-3468 John D. M. Folger, State Librarian Georgia State University Bureau of Business & Economic Research (1950) 33 Gilmer Street, S.E. 30303 Willys R. Knight, Director Southern Regional Council 5 Forsyth Street, N.W. Telephone: (404) 522-8764 Paul Anthony, Executive Director State of Georgia Bureau of State Planning and Community Affairs, Office of the Governor 270 Washington Street, S.W., Room 61130334 Telephone: (404) 656-3821 Tom Linder, Jr., State Planning and Community Affairs Officer # Hawaii #### HONOLULU Hawaii Employers Council P.O. Box 9663 96620 Telephone: (608) 341-6141 Betty F. Hirozawa, Director of Research Municipal Reference Library 305 City Hall 96813 Telephone: (808) 846-7578 (Mrs.) Jean K. Mardfin, Municipal Librarian State of Hawaii Department of Budget and Finance P. O. Box 150 96810 Hiram K. Kamaka, Director Legislative Budget Office Iolani Palace 96813 Clinton Tammura, Legislative Auditor Office of the Governor State Capitol Building 98613 Telephone: (808) 548-2378 Hirobumi Uno, Special Asst. on Human Resources Tax Foundation of Hawaii (1953) 680 Alexander Young Building 96813 Telephone: (802) 536-4527 Fred W. Bennion, Executive Director Nell Cammack, Research Assistant University of Hawaii 90822 Legislative Reference Bureau (1943) Telephone: (808) 536-7372 Henry N. Kitamura, Director Samuel B. K. Chang, Deputy Director Economic Research Center Walter Miklius, Director Social Science Research Institute (1959) William P. Lebra, Director # Illinois # CARBONDALE Southern Illinois University 62901 Community Development Institute 511 South Grand Telephone: (618) 453-2491 Richard M. Thomas. Director Howard R. Delaney, Assistant Director Robert K. Knittel Donald E. Voth Raymond E. Wakeley Malcolm T. Walker Department of Government J. F. Isakoff Public Affairs Research Bureau David Kenney, Head #### CHICAGO Better Government Association 75 East Wacker Drive 60601 Telephone: (312) 641-1181 J. Terrence Brunner, Executive Director Chicago Association of Commerce and Industry Governmental Affairs Division 130 South Michigan Avenue 60603 *Presion E. Feden, Director Chicago Crime Commission (1915) 79 West Monroe Street 60603 Telephone: (312) FRanklin 2-0101 Harvey N. Johnson, Jr., Operating Director City of Chicago Department of Purchase, Contracts and Supplies Room 400, City Hall - 60802 Telephone: (312) 744-4300 *John F. Ward, Purchasing Agent 29 East Madison Street 60602 Telephone: (312) 263-3237 Norman J. Beatty, Executive Secretary *D. Daniel Baldino, Director of Public Affairs *Lavern W. Kron, Director of Research *William J. McGlone, Director of Development *Richard F. Elberfeld, Research Analyst Lorraine Woods, General Counsel Illinois State Chamber of Commerce (1919) Tax Department 20 North Wacker Drive 60606 Telephone: (312) FRanklin 2-7373 Loyola University Center for Research in Urban Government 820 North Michigan Avenue 60611 Telephone: (312) 944-0300 Joseph Small, Acting Director Metropolitan Housing and Planning Council (1934) 53 West Jackson Boulevard 60694 Telephone: (312) 922-5616 (Mrs.) Frederick H. Rubel, Director Municipal Reference Library 1004 City Hall 60602 Telephone: (312)744-4994 Joyce Malden, Librarian Union League Club of Chicago (1879) 65 West Jackson Blvd. 60604 Telephone: (312) HArrison 7-7000 *Robert W. Bergstrom, President *Roger E. Henn, Director, Public Affairs Edward M. Martin, Director, Emeritus University of Chicago Population Research Center 1413 East 60th Street 60637 Telephone: (312) 753-2571 Philip M. Hauser, Director University of Illinois at Chicago Circle Center for Urban Studies Box 4348 60680 Telephone: (312) 663-8722 Stuart Scher, Director # EAST ST. LOUIS St. Clair County Taxpayers' Association 622 First National Bank Building 62201 Telephone: (618) 875-2250 John R. Henne, Executive Vice-President ### **EDWARDSVILLE** Southern Illinois University 62025 Regional & Urban Development Studies & Services Telephone: (618) 692-3032 William J. Tudor, Director #### EVANSION Northwestern University The Transportation Center 1818 Hinman 60204 Telephone: (312) 492-3220 John A. Bailey, Director Duane F. Marble, Director of Academic Richard M. Michaels, Director of Research Edward K. Morlok Patrick M. O'Sullivan Peter L. Watson Programs # HARVEY South Suburban Chamber of Commerce and Industry 15328 Center Avenue 60426 Telephone: (312) 333-1720 C. Frohman Johnson. Executive Vice-President # PEORIA Peoria Association of Commerce 307 First National Bank Building 61602 Telephone: (309) 676-0755 H. N. Johnson, Executive Vice-President #### ROCKFORD Civic League, Inc. of Winnebago County 604 Rock River Savings Building 61101 401 West State Street Telephone: (815) 963-7114 *Arthur D. Logan, Executive Secretary #### SPRINGFIELD Illinois Municipal League (1914) 1220 South 7th Street 62703 Telephone: (217)525-1220 Steven Sargent, Executive Director Illinois State Chamber of Commerce Government Operations Department 415 Illinois Building 607 East Adams 62701 Telephone: (217) 544-1787 State of Illinois Dept. of Local Government Affairs 325 West Adams Street, Room 206 62706 Telephone: (217) 525-5436 Robert J. Lehnhausen, Director Legislative Council (1937) M-3 State House 62706 Telephone: (217) 525-6851 William L. Day, Director of Research H. William Hey, Associate Director James T. Mooney, Deputy Director for , Legal Research Paul W. Reeder Robert G. Granda William M. Bleakley Danee R. Wright Gerald L. Gherardini Dorothy A. Nadasdy Office of the Governor 205 State Capitel Building 62706 Telephone: (217) 525-6330 Ronald D. Michaelson, Asst. to the Governor (Local Affairs) Taxpayers' Federation of Illinois 62702 525 W. Josterson, Suite 506 Telephone: (217) 522-6818 Maurice W. Scott, Exec. Vice-President # **URBANA** University of Illinois 61801 Bureau of Urban and Regional Planning Research 1202 West California Telephone: (217) 333-3020 Eric Freund, Director Bureau of Economic & Business Research 403 David Kinley Hall Telephone: (217) 333-2330 V. Lewis Bassie, Director Institute of Government and Public Affairs 1201 W. Nevada Telephone: (217) 333-3340 *Samuel K. Gove, Director # Indiana #### **BLOOMINGTON** Indiana University 47401 Institute of Public Administration (1963) Telephone: (312) 337-6505 #### **EVANSVILLE** Metropolitan Evansville Chamber of Commerce Governmental Affairs Division Southern Securities Building 47708 H. F. Tim Hines, Executive Vice Presiden: John Munger, Director #### FORT WAYNE Chamber of Commerce of Fort Wayne Public Affairs Department 826 Ewing Street 46802 Telephone: (219) 742-0135 C. James Owen, Dir. Civic Affairs Mary Johnson, Research Assistant Taxpayers Research Association (1934) \$26 Ewing Street 46802 Telephone: (219) 743-4892 *R. Dean Hall, Executive Director #### GARY Gury Chamber of Commerce Governmental Affairs and Tax Research Dept. 583 Broadway 46402 Telephone: (219) 805-7407 George Uzelac, Director Gloria Walton, Tax Assistant # HAMMOND Hammond Chamber of Commerce (1913) 429 Fayette Street 46323 Telephone: (219) WEstmore 1-1001 Walter Ford, Executive Vice President ## **INDIANAPOLIS** Indiana Association of Cities and Towns 403-16 Ista Center . 150 W. Market Street 46204 Telephone: (317) MElrose 5-8616-17 Ivan H. Brinegar, Executive Director Indiana State Chamber of Commerce Taxation Department Board of Trade Building 46204 Telephone: (317)634-6407 *Edward J. Bowman, Director Indianapolis Chamber of Commerce Bureau of Governmental Research (1923) 320 North Meridian Street 48204 Telephone: (317) MElrose 5-6423 *Donald L. Robinson, Director State of Indiana Civil Rights Commission 1004 State Office Bldg. 46204 Telephone: (317) 633-4855 C. Lee Crean, Director Legislative Council (1987) 301 State House 46204 Telephone: (317) 633-6570 Edison L. Thuma, Executive Director #### MUNCIE Muncie-Delaware County Chamber of Commerce 500 N. Walnut Street 47305 Telephone: (317) 283-6681 Robert L. Brock, Manager Charles E. McGrigg, Mgr. Tax Research Dept. ### RICHMOND Richmond Board of Realtors Tax Research Buzeau (1937) 208 Medical Arts Bldg. 47374 Telephone: (317) 962-5144 J. F. Wiechman, Executive Director # TERRE HAUTE Indiana State University Center for Governmental Services Telephone: (812) 232-6311 *William Harader, Director # Louisiana #### **BATON ROUGE** Council For A Better Louisiana Fidelity National Bank Building P. O. Box 2978 - 70821 Telephone: (504) 342-5229 *Edward W. Stagg, Executive Director O. Fred Loy, Jr., Assistant Director Louisiana Municipal Association (1937) 301 Capitol House Hotel Telephone: (504) 343-9571 Marvin L. Lyons, Executive Director Louisiana State Law Institute Telephone: (504) 389-6370 J. Denson Smith, Director William F. Bailey, Coordinator of Research and Revisor Carol N. Blitzer Louisiana State University 79803 Institute of Government Research Telephone: (504) 388-2142 and 388-2141 *Louis E. Newman, Director Department of Political Science *Louis E. Newman, Associate Professor Public Affairs Research Council of Louisiana, Inc. Attorney's Building, Suite 200 70801 300 Louisiana Avenue, Post Office Box 3118, 70821 Telephone: (504) 343-9204 *Edward J. Steimel, Executive Director *Arthur R. Thiel, Research Director *Emegene Pliner, Director of State Studies Charles Saunders, Research Associate Richard Keller, Research Associate Tem Farley, Research Analyst *Hubert C. Lindsay, Research Analyst Sylvia McCracken, Research Analyst Reilly Stonecipher, Research Assistant Jackie Ducote, Research Librarian ### **NEW ORLEANS** Bureau of Governmental Research (1933) 4303 Richards Bldg. 70112 Telephone: (504)525-4152 *Louis D. Brown, Executive Director
*George W. White, Research Director Chamber of Commerce of the New Orleans Area Area Development Department P. O. Box 30240 70130 Telephone: (504) 524-1131 J. Ferdie Hebert, Jr., Director City of New Orleans City Hall 70112 *Bernard B. Levy, Chief Administrative Officer Metropolitan Crime Commission of New Orleans (1954) 1107 National Bank of Commerce Building 70112 Telephone: (504) 524-3148 Aaron M. Kohn, Managing Director Tulane University of Louisiana, The 70118 School of Law Telephone: (504) 865-7711, ext. 302 Joseph M. Sweeney, Dean Urban Studies Center William W. Shaw, Director # Maine # **AUGUSTA** State of Maine 04330 Housing Authority State Office Building, Room 219 04330 Telephone: (207) 289-2546 Eben L. Elwell, Director Legislative Reference Bureau (1917) Telephone: (207) 289-2754 Edith L. Hary, State Law Librarian Legislative Research Committee Telephone: (207) 289-2101 Samuel H. Slosberg, Director David S. Silsby, Asst. Director # **BRUNSWICK** Bath-Brunswick Regional Planning Commission 98 Main Street: 04011 Telephone: (207) 725-4233 Dana A. Little Bowdoin College 04011 Public Affairs Research Center Telephone: (207) 725-8731 #### HALLOWELL Maine Municipal Association (1937) 89 Water Street 04347 Telephone: (207) 623-8429 John L. Salisbury, Executive Secretary #### ORONO University of Maine at Orono 04473 Bureau of Public Administration Telephone: (207) 581-7744 Dana R. Baggett. Director James J. Haag, Research Supervisor # Maryland ### **ANNAPOLIS** Maryland Legislative Council (1939) 16 Francis Street P.O. Box 348 21404 Telephone: (301) 267-5561 Carl N. Everstine, Secretary and Director of Research State of Maryland Department of Legislative Reference (1917) 16 Francis Street 21404 P.O. Box 348 Telephone: (301) 267-5561 Carl N. Everstine, Director Ruth D. Eaton, Librarian Maryland Department of Fiscal Services P. O. Box 231—Treasury Building 21404 Telephone: (301) 269-0790 Paul D. Cooper, Director of Department Pierce J. Lambdin, Director—Division of Audits Kenneth N. Bragg, Director—Division of Budget Review William S. Ratchford, II, Director— Division of Fiscal Research Maryland Municipal League 76 Maryland Avenue 21401 Telephone: (301) 268-5514 *Peter B. Harkins, Executive Director # BALTIMORE Chamber of Commerce of Metropolitan Baltimore Business Research Department (1930) 22 Light Street 21292 Telephone: (301) LExington 9-7609 M. R. Bourn, Manager Citizens Planning and Housing Association (1940) 330 North Charles Street 21201 Telephone: (301) 539-1369 Christopher C. Hartman, Executive Director City of Baltimore Department of Legislative Reference (1905) City Hall 21202 Telephone: (201) PLaza 2-2000, Ext. 385 Leon A. Rubenstein, Director Commission on Governmental Efficiency and Economy, Inc. (1929) 330 North Charles Street 21201 Telephone: (301)727-0910 *Eugene M. Thomas, III. Director *Jerrietta R. Hollinger, Research Associate Johns Hopkins University Department of Political Science Telephone: (301) 356-3300 Francis E. Rourke Morgan State College Urban Studies Institute Coldispring Lane & Hillen Rd. 21212 Telephone: (301) 323-2270, Ext. 312 # COLLEGE PARK University of Maryland 20742 Bureau of Governmental Research Telephone: (301) 454-2506 Franklin L. Burdette. Director Clarence N. Stone. Director. Urban Research Group: Director. Maryland Technical Advisory Service Grove E. Nash. County Management Associate: Deputy Director. Maryland Technical Advisory Service M. Henry Eppes Edward D. Kelleher John E. Rouse, Jr. Carl T. Richards James E. Skok Daniel R. Thompson Bureau of Business & Economic Research (1947) John W. Dorsey, Director Department of Government & Politics Telephone: (301) 454-2248 *Don C. Piper, Chairman Ernest A. Chaples M. Margaret Conway Donald J. Devine Conley H. Dillon Parris Glendening Joseph L. ingles Cherles Levina Earlean McCarrick Eugene B. McGregor Thomas Murphy Ralph A. Ranald Mavis M. Reeves James C. Strouse # Massachusetts # **BOSTON** Boston Finance Commission (1909) Room 820, 3 Center Plaza 02108 Telephone: (617) LAfayette 3-1622 *Thernay J. Murphy. Executive Secretary Chandler W. Smith, Analyst Robert G. West, Analyst Louis R. Sacco, Analyst Boston Municipal Research Bureau 294 Washington Street 62103 Telephone: (617) HUbbard 2-3626 "Joseph R. Barresi, Executive Secretary Naomi B. Isler, Sentor Research Associate Carl A. Prusing, Research Associate Commonwealth of Massachusetts Department of Corporations and Taxation Bureau of Planning and Research 100 Cambridge Street 02204 Daniel B. Breen, Chief Joint Committee on Taxation State House, Room 227 02133 Robert H. McClain, Jr. Legislative Research Bureau State House, Room 236, 02133 Daniel M. O'Sullivan Greater Boston Chamber of Commerce 125 High Street 02110 Telephone: (617) 426-1250 James G. Kelso, Executive Vice President Community Development Department *William F. Chouinard, Manager Public Affairs Department *Thomas J. Moccia, Director Harvard University Graduate School of Business Administration Division of Research (1812) Telephone: (617) 495-1000 Soldiers Field 02163 Richard E. Walton, Director Robert N. Anthony Joseph L. Bower John W. Drake Ray A. Goldberg Regina Herzlinger John W. Pratt Howard Raiffa James G. Wayne, Jr. b Beacon Butter 02100 Telephone: (617) 742-2334 *Kenneth E. Pickard. Executive Director John F. Bacey, Jr., Director, Legislative Services Massachusetts Taxpayers Foundation, Inc. 145 Tremont Street 02111 Telephone: (617)357-8500 *Richard A. Manley, Executive Vice President Francis Blunt, Librarian *Lyman H. Ziegler, Director—Technical Services and Municipal Consultant *Susanne E. Tompkins, Senior Research Associate Doris P. Paul, Research Associate *Edward H. Dlott, Research Associate *Nancy S. Serafini, Research Associate John C. Driscoll, Special Assistant to Executive Vice President Francis M. Keane, Legislative Counsel Robert C. O'Day, Field Director Metropolitan Area Planning Council 44 School Street 02108 Telephone: (617) 523-2454 *Richard M. Doherty, Executive Director James A. Miller, Director of Planning Paul E. McBride, Director of Metropolitan Projects The New England Council for Economic Development, Inc. (1925) 1802 Statler Building 02116 Telephone (617) 542-2580 A Thomas Easley, Executive Vice-President Northeastern University Bureau of Business & Economic Research (1953) 360 Huntington Avenue 02115 Dean S. Ammer, Director Curriculum in Public Administration David W. Barkley State Library State House 02133 Telephone: (617)727-2590 I. Albert Matkov, State Librarian University of Massachusetts Institute for Governmental Services 55 Devonshire 02109 Telephone: (617) 723-7820 *Maurice A. Donahue, Director # BROOKLINE Brookline Taxpayers Association, Inc. (1935) 7 Harvard Street 02146 Telephone: (617) AS 7-6038-9 Ray Alden, Executive Director Catabridge Advisory Committee City Hall 02138 Telephone: (617) 375-6800 Paul J. Frank, Executive Director Harvard University 02138 John Fitzgerald Kennedy School of Government Telephone: (617) 495-5000 Don K. Price, Deen Joint Center for Urban Studies of M.I.T. and Harvard University 66 Church Street 02133 Telephone: (617) 868-1410 Bernard J. Frieden, Director and Chairman, Executive Committee Charles M. Haar, Vice Chairman, Executive Committee Joseph F. Connolly, Administrative Officer # CHICOPEE Chicopee Taxpayers Association (1955) 43 Center Street 01013 Telephone: (413) LYceum 4-9075 ### HCLYOKE Holyoke Taxpayers Association. Inc. (1932) 225 High Street 01040 Telephone: (413) 532-1600 Charles M. Healey, Jr., Executive Director # NEW BEDFORD New Bedford Taxpayers Assoc., Inc. 623 Pieasant Street 02740 Telephone: (617) 982-3638 Clair F. Carpenter, Executive Director # NEWTON Newton Taxpayers Association 313 Washington Street 02158 Telephone: (617) Blgelow 4-7614 Lorenz F. Muther, Jr., Executive Director New England School Development Council 55 Chapel Street 02160 Telephone: (617) 969-1150 Robert Ireland, Executive Secretary #### PITTSFIELD Association of Business and Commerce of Central Berkshire County, Inc. 46 West Street 01201 Telephone: (413) 443-9117 Daniel J. Courtney, President Quincy Taxpayers Association, Inc. (1935) 1 Cliveden Street 62169 Telephone: (617) GRanite 2-3586 Harry E. Roemer, Executive Director #### **TAUNTON** Taunton Area Chamber of Commerce, Inc. (1959) 39 Taunton Green 02780 Telephone: (617) 324-4068 Charles E. Volkmann, Executive Vice-Pres. # WELLESLEY Wellesley College 02181 Department of Political Science Telephone: (617) 235-0320 Alan H. Schechter, Chairman # W.ORCESTER Citizens' Plan E Association (C.E.A.), The (1947) 32 Franklin Street. Room 407 01608 Telephone: (617) 757-4832 Barbara C. Kohin, President Worcester Area Chamber of Commerce 90 Madison Street 01608 Telephone: (617) 753-2924 Roland L. Theriault, Manager, Govt. Dept. Worcester Taxpayers Association (1931) Room 702, 29 Pearl Street 01608 Telephone: (617) 755-0721 *Malcolm D. MacLeod, Executive Director *John H. Mahoney, Consultant # Michigan # ANN ARBOR Michigan Municipal League (1899) 1675 Green Rd. 40105 Telephone: (313) NOrmandy 2-3246 Robert E. Fryer, Director Robert L. Hegel, Manager, Publication Research Division Shirley S. Smith, Staff Associate R. Thomas Martin, Staff Assistant University of Michigan Center for Research on Economic Development 300 South State Street 43104 Telephone: (313) 764-9490 Elliot J. Berg, Director Graduate School of Business Administration Bureau of Business Administration Telephone: (313) 764-1366 H. Paul Root, Director Institute of Public Policy Studies (1914) 1510 Rackham Building 43104 Telephone: (313) 764-3491 John P. Crecine, Director Joel Aberbach Russell Hill Stephen Pollock Denald Shoup Jack L. Walker Kenneth Wertz Sidney Winter Legislative Research Center William J. Pierce, Director #### DETROIT Citizens Research Council of Michigan (1918) 1526 David Stott Building 1150 Griswold Street 48226 Telephone: (313) 961-5377 *Robert E. Pickup. Executive Director *Robert L. Queller, Research Director
*William A. Carter, Senior Research Associate *Kathleen R. Kepner, Senior Research Associate *Paul Timmreck. Research Associate Civic Searchlight, Inc. (1912) 2337 Commonwealth Building 48226 Telephone: (313) WOodward 1-1330 *William H. O'Brien, Executive Secretary Metropolitan Fund. Inc. Detroit Bank & Trust Bldg. 48226 211 West Fort Street Telephone: (313) 961-7887 Kent Mathewson, President Municipal Reference Library (1945) 1004 City-County Building 48226 Telephone: (313) 224-3385 Gertrude Pinkney, Chief Diana Franco, Asst. State of Michigan Executive Office, Office of Community Affairs 7310 Woodward Avenue 48202 Telephone: (313) 222-3257 Roy Levy Williams, Special Assistant for Urban Affairs UAW-International Union Research Department 8000 East Jefferson 48214 Telephone: (313) 926-5261 Carrol L. Coburn, Director Wayne State University Department of Political Science 256 Mackenzie Hall Telephone: (313) 577-2634 Charles James Parrish, Chairman # EAST LANSING Michigan State University Institute for Community Development Keilogg Center, Room 27 48823 Telephone: (517) 355-0100 *Duane L. Gibson, Director #### FLINT Civic Research Council of Flint (1939) 505 Metropolitan Building 48502 Telephone: (313) CE 4-4664 G. Keyes Page, Executive Vice-President Manufacturers Association of Flint 403 Mott Foundation Building 48502 Telephone: (313) CEdar 8-2635 Osmund Kelly, Executive Director #### KALAMAZOO City of Kalamazoo Burcau of Municipal Research (1934) City Hall 49006 Telephone: (816) 381-5500 David M. Bradford, Director Western Michigan University Institute of Public Affairs, The Sangren Hall 49001 Tolephone: (616)383-1889 Robert W. Kaufman, Director Helenan Lewis, Research Associate #### LANSING Citizens Research Council of Michigan (1916) LANSING OFFICE 834 Michigan National Tower 48933 Telephone: (517) 435-9444 *Francis A. Wheeler, Director, State Affairs Michigan Association of Counties 319 West Lenawee Street 48933 Telephone: (517) 372-5374 A. Barry McGuire, Executive Director Michigan Manufacturers Association 655 Stoddard Building 48933 Telephone: (517) 484-1377 Eldon W. Sneeringer, Director of Research Michigan State Chamber of Commerce (1959) 501 South Capitol Avenue 48933 Telephone: (517) 371-2100 Harry R. Hall, CCE, President State of Michigan Executive Office of Governor Eureau of the Budget Lewis Cass Building 43913 Telephone: (517) 373-0294 Charles F. Sturtz, Chief, Budget Analyst Unit-Education Robert P. Endriss, Budget Analyst Education Department of Economic Expansion Leonard D. Bronder Legislative Spraine Burgan (1941) Leonard D. Bronder Legislative Service Bureau (1941) P. O. Box 240 48913 Telephone: (517) IVanhoe 4-9554 Gene Reyhons, Director #### MUSKEGON Civic Affairs Research, Inc. (1959) 931 Third St. 49440 Telephone: '616) 722-2581 *David H. Walborn, President Muskegon Area Development Council and Chamber of Commerce 4th Street at Webster Avenue 49441 Telephone: (616) 722-3751 John Chapman. Executive Vice-President Research & Environmental Development Division *Max D. Petersen, Director # Minnesota ### DULUTH Governmental Research Bureau, Inc. (1921) 907 Alworth Building 55802 Telephone: (218) 722-6544 *David J. Hagelin, Executive Secretary #### MINNEAPOLIS Citizens League (1952) 536 Syndicate Building 55402 Telephone: (612) 338-0791 Ted Kolderie, Executive Director Paul A. Gilje, Research Director Calvin W. Clark, Research Associate Clarence Shallbetter, Research Associate League of Minnesota Municipalitics (1913) 3300 University Ave. S.E. 55414 Telephone: (612) 373-9902 Dean A. Lund, Executive Secretary Greater Minneapolis Chamber of Commerce Legislative Department 15 South 5th Street 55402 Telephone: (612) 339-3521 Lloyd L. Brandt, Manager Minneapolis Tempayers Association (1924) 625 Second Avenue, Room 419 55402 R. T. Oakes, Director University of Minnesota Municipal Reference Bureau (1913) 3300 University Ave. S.E. 55414 Telephone: (612) 373-9992 Dean A. Lund, Director # ST. PAUL Metropolitan Council of the Twin Cities Area Capitol Square Bldg. Cedar at 10th 55101 Telephone: (612) 227-9421 Minnesota Taxpayers Association 812 Minnesota Building 55101 Telephone: (612) 224-7477 *Charles P. Stone. Executive Director *Harold T. Miller. Research Director Gary W. Bostian, Research Analyst Saint Paul Area Chamber of Commerce Governmental Research Department Osborn Building, Suite 300 55102 Telephone: (612) 222-5561 David L. Schoeneck, Director State of Minnesota Office of Local and Urban Affairs Capitol Square Bidg 55101 Telephone: (612) 221-3091 James J. Solem. Director State Planning Agency Capitol Square Bidg., Room 802 55101 Telephone: (612) 221-6652 A. Edward Hunter, Deputy Director # Mississippi # **JACKSON** Mississippi Economic Council P. O. Box 1649. Standard Life Building 39295 Telephone: (601) 355-4721 Bob W. Pittman, General Manager Research Department Glyde McLeod, Director Mississippi Municipal Association Downtowner, Suite 411 P. O. Box 254 39205 Telephone: (601) 355-3791 W. J. Caraway, Executive Vice-President State of Mississippi Research and Development Center P.O. Box 2470 39205 Telephone: (601) 982-6456 Kenneth C. Wagner, Director # New Hampshire # CONCORD New Hampshire Municipal Association 64 South Street, P. O. Box 617 03301 Telephone: (603) 224-7117 David L. Mann, Executive Director Legislative Service (1935) Telephone: (603) 271-2229 Philip A. Hazelton, Law Librarian Richard M. Serena, Legislative Research Librarian (Mrs.) Constance T. Rinden, Assistant Law Librarian ### **DURHAM** University of New Hampshire 03924 Department of Political Science Public Administration Service Telephone: (603) 868-5511 Lawrence W. O'Connell, Director # New Jersey # JERSEY CITY Jersey City Chamber of Commerce (1890) 911 Bergen Avenue 07306 Telephone: (201) 653-7400 *Edward C. Babcock, Director of Governmental Research #### **MADISON** Drew University 07940 Department of Political Science Telephone: (201) 377-3000 Julius Mastro, Chairman Institute for Research on Cover- Institute for Research on Government Telephone: (201) 377-3000 Robert G. Smith, Director ### NEWARK Greater Newark Chamber of Commerce 1180 Raymond Boulevard 07102 Telephone: (201) 624-8333 Charles G. Hall, President *Alan D. Levine, Vice Pres. for Research & Govt. Affairs Joan A. Rohifs, Assoc. Research Dir. Hew Jersey State Chamber of Commerce (1911) 54 Park Place 07102 Telephone: (201) 623-7070 Donald H. Scott, Exec. Vice-President Department of Governmental and Economic Research *Gerald D. Hall, Director #### NEW BRUNSWICK Rutgers—The State University 09900 Eureau of Governmental Research Telephone: (201) 932-3642 *Ernest C. Reock, Jr., Director, Bureau of Government Research Raymond D. Bodnar, Director, Govt. Services Training Program Philip H. Burch, Jr. Harris I. Effross William G. Rae Robert White *Wesley R. Westmeyer Eagleton Institute of Politics Donald G. Herzberg, Executive Director # PRINCETON Allen Rosenthal Greater Princeton Chamber of Commerce and Civic Council 44 Nassau St. 08540 Telephone: (609) 921-7676 Princeton University 08540 Telephone: (609) 452-3000 Research Center for Urban and Environmental Planning Dorothy E. Whiteman, Assistant Director Department of Politics W. Duane Leckard, Chairman Woodrow Wilson School of Public and International Affairs John P. Lewis, Dean # **TRENTON** Trenton-Mercer County Chamber of Commerce Governmental Affairs Department 104 N. Broad St. 08508 Telephone: (609) 393-4143 Bruno Fiabane, Research Associate New Jersey Manufacturers Association Sullivan Way, P.O. Box 2708 08607 Telephone: (609) 883-1300 Leonard C. Johnson, President New Jersey State League of Municipalities (1915) 433 Bellevue Avenue 08618 Telephone: (609) 695-3481 Robert H. Fust, Executive Director John E. Trafford, Research & Information Associate New Jersey Taxpayers Association (1931) 104 North Broad Street 03608 Telephone: (609) EXport 4-3116 Frank W. Haines, Jr., Executive Director Philip W. Blaze, Secretary Maurice S. Shier, Director of Research David C. Dare, Office Manager # New York # **ALBANY** Citizens Public Expenditure Survey, Inc. (1938) 100 State Street 12207 Telephone: (518) HO 5-4506 James E. Finke, Executive Vice-President John M. Quimby, Director of Research Gertrude Wilber, Research Analyst Robert W. Engelhardt, Research Analyst Empire State Chamber of Commerce 150 State Street 12207 Telephone: (518) 472-9166 John J. Roberts, Executive Vice-President Arthur M. Arnold, Director of Taxation and Governmental Affairs Sanford H. Bolz, General Counsel New York State Civil Service Commission The State Campus 12201 Telephone: (518) GL 7-2487 (Mrs.) Ersa H. Poston, President Department of Audit and Control The Governor Alfred E. Smith State Office Building Telephone: (518) GR 4-4044 Arthur Levitt, State Comptroller Martin Ives, Deputy Comptroller Division of the Budget State Capitol 12201 Telephone: (513) 474-2300 Richard L. Dunham, Director Education Department Telephone: (518) GR 4-3878 Lorne H. Woollatt, Associate Commissioner of Education (Research) # Legislative Commission on Expenditure Review 111 Washington Avenue 12210 Telephone: (518) 474-1497 *Troy R. Westmeyer, Director *Ray D. Petitel, Assistant Director *Neil C. Blanton *Richard E. Brown *Robert Fleischer *Stuart Graham *Harry Moscatello *Richard C. Spaulding Legislative Reference Library (1890) Telephone: 518) GR 4-5945 William P. Leonard, Librarian Office for Local Government (1959) 155 Washington Avenue 12210 Telephone: (518) GR 4-4210 *Richard A. Atkins, First Deputy Commissioner *Franklin M. Bridge, Director, Municipal Management Services Division of Economic Opportunity 107 Washington Avenue Albany, New York 12210 Telephone: (518) 474-3642 William P. McGlone, Director Office of Planning Services State Capitol 12210 Telephone: (513) 474-7955 Richard A. Wiebe, Director New York State Conference of Mayors (1910) 6 Elk Street 12207 Telephone: (518)463-1185 Raymond J. Cothran, Executive Director J. Omer Laplante, Assistant to
Director Donald A. Walsh, Counsel Donald F. Larson, Attorney John H. Galligan, Administrative Assistant Stain University of Hew York 135 Western Avenue 12203 Telephone: (518) 472-5362 Ernest L. Boyer, Chancellor Greduate School of Public Affairs L. Gray Cowan, Dean *Joseph A. Zimmerman # BUFFALO Buffalo Area Chember of Commerce (1844) 238 Main Street 14202 Telephone: (716) 252-5400 C. F. Light, Executive Vice-President Research and Education Department Kurt Alverson, Manager Tax and Legislative Service Department Herbert Berry, Manager Greater Buffalo Development Foundation, Inc. 136 Rand Building 14203 Telephone: (716) 856-2708 Lee Norton, Director Henry E. Wyman, Director, Government Research Dept. ### HEMPSTEAD Hofstra University 11550 Center for Eusiness & Urban Research Telephone: (516) 560-3297 Lois Blume, Director #### ITHACA Cornell University Telephone: (607) AR 5-5014 Thomas R. Research Sponsored Research Graduate School of Business and Public Administration Justin Davidson, Dean Edward S. Flash College of Agriculture E. A. Lutz, Projessor of Public Administration Department of Government Arch T. Dotson, Chairman #### JERICHO Bureau of Government Research, Division of the Long Island Assoc. Of Commerce & Industry 131 Jericho Turnpike 11753 Telephone: (516) 333-9300 John Brewer, Director Mrs. Marion King, Research Librarian # NEW YORK CITY Academy of Political Science of New York 1108 International Affairs Bldg. Columbia University 10027 Telephone: (212) 280-3642 Robert H. Connery, Executive Director Bernard M. Baruch College of the City University of New York. The 17 Lexington Avenue 10019 Telephone: (212) ORegon 3-7709 Clyde Winfield, President Stocklyn College of the City University of New York Department of Political Science Brooklyn 11210 Telephone: (212) 780-5306 Albert Gorvine, Chairman Martin Landau Sungjoo Han Peter Gluck Dennis Pelumbo Richard Styskal Citizens Budget Commission, Inc. (1932) 110 East 42nd Street 10017 Telephone: (212) 687-0711 *David Bernstein, Acting Exec. Dir. Herbert J. Ranschburg, Assistant Executive Director Richard Morris, Research Analyst Citizens' Housing and Planning Council of New York, Inc. 29 West 40th Street 10018 Telephone: (212) 563-5990 Roger Starr, Executive Director Citizens Union of the City of New York (1897) 15 Park Row 10038 Telephone: (212) BArclay 7-0342 Gary H. Sperling, Executive Secretary "George H. Hallett, Jr., Legislative Representative Differs Union Research Foundation, Inc. 15 Park Row 10033 Telephone: (212) BArclay 7-0342 Dana Converse Backus, President, George II, Hallett, Jr., Director of Research City Club of New York, The (1892) 5 West 48th St. 10036 Telephone: (212) LT 1-2485 Robert Conrad, President City of New York Finance Administration Fiscal Research Dept. Municipal Building, Rm. 506 10007 Telephone: (212) 566-5213 *John Fava, Deputy Finance Administrator Joan Russell Perry (Mrs.) Sue Papish Jeanne Griffo Peter Shalleck Charles Sandmel Municipal Service Administration Municipal Building, Room 2139 10007 Telephone: (212) 566-4446 Martin J. Hodanish, Director, Performance Planning & Management Civil Service Reform Association (1877) 315 Fifth Avenue 10016 Telephone: (212) MUrray Hill 9-3544 Alfred Kleinfield, Executive Director Columbia University Department of Political Science Fayerweather Holl 10027 Telephone: (212)280-3644 Wayne A. Wilcox, Chairman Legislative Drafting Research Fund 5 West 10 Law School Frank Grad, Director Department of Economics 521 Fayerweather Hall Telephone: (212) 280-2494 C. Lowell Harriss Commerce and Industry Association of New York, Inc. 99 Church Street 10007 99 Church Street 10007 Telephone: (212)732-5200 Ralph C. Gross, President Downtown-Lower Manhattan Association. Inc. 120 Broadway—Room 1043 10005 Telephone: (212) REctor 2-4030 "John B. Goodman, Executive Vice President Economic Development Council of New York City, Inc. 230 Park Avenue 10017 Telephone: (212)684-2300 Paul Busse, Executive Vice-President Roland J. Delfausse, Vice President for Government Research *Robert W. Schleck, Senior Research Associate Governmental Research Association, Inc. (1914) P.O. Box 387 Ocean Gate, New Jersey 08740 Telephone: (201) 269-3489 *Troy R. Westmeyer, Secretary-Treasurer Sandra J. Leibrick, Assistant Secretary Hunter College of the City University of New York Department of Urban Affairs 790 Madison Avenue 10021 Telephone: (212) 360-5594 Seymour Mann, Chairman Bertram Gress Robert C. Weaver Donald Sullivan Herbert Hyman Peter Salins William Stafford Institute for Public Service (1915) 329 E. 88th Street 10028 Telephone: (212) LE 4-7408 William Allen, Jr., Director Officers and Senior Lide *Luther R. Guliek, Chairman of the Iscard Lyle C. Fitch, President Mark W. Cannon, Director *Robert H. Kirkwood, Assistant to the President Howard N. Mantel, Assistant Director and Counsel Ruth P. Mack, Director, Economic Studies Xenia Duisin, Library Director Sumner Myers, Director, Urban Systems Studies (Washington) Annmarie Hauck Walsh Ramiro Cabezas M. (Peru) Randoiph L. Marshall (Uganda) Albert A. Mavrinae (So. Vietnam) Charles S. Ascher, International Representative Metropolitan Regional Council 1 World Trade Center, Suite 2437 10048 Telephone: (212) 466-3850 Robert P. Slocum, Executive Director Metropolitan Transportation Authority 1700 Broadway 10019 Telephone: (212) 757-4040 William J. Ronan, Chairman Lawrence R. Bailey Leonard Braun William L. Butcher Donald H. Elliott Justin N. Feldman Robert R. Prince, Secretary and Counsel Sidney Brandes, Executive Officer for Construction Administration James B. Huff, Controller Sidney J. Frigand, Public Affairs Director Municipal Reference & Research Center 2230 Municipal Building 10007 Telephone: (212) 566-4285, 6 Eugene J. Bockman, Director Thelma E. Smith, Deputy Director Frieda W. Chait, Chief, Reference & Research Services (212) 566-4284 Eve Thurston, Chief, Technical Services (212) 566-4233 Devra Zetlan, Public Health Librarian (212) 566-5169 Solomon Jacobson, Legislative Reference Librarian (212) 566-2976 New School for Social Research Center for New York City Affairs 65 West 12 Street 10011 Telephone: (212) 675-2700 Henry Cohen, Director Blanche Bernstein, Director of Research. Urban Social Problems Robert Hearn Jacob B. Ukeles, Chairman, Dept. of Urban Affairs Jerome Liblit, Associate Dean New York Chamber of Commerce 65 Liberty Street 10005 Telephone: (212) REctor 2-1123 Thomas Stainbach, Exec. Vice-President Frank A. Bradv, Fiscal Economist Peier Lynch, Director, Industrial Relations Research Kenneth E. Placek, Research Assistant New York City Housing & Development Administration 100 Gold Street 10067 Telephone: (212) 566-4440 Albert A. Walsh, Administrator Joseph Polser, Asst. Administrator for Public Affairs New York City Oif-Track Betting Corporation 1501 Broadway 16036 Telephone: (212) 621-5461 Howard Samuels, President Hoger J. Herz, Assistant to Vice President of Administration and Facilities Robert Sullivan, Director of Research New York University Graduate School of Public Administration Washington Square North 10003 Telephone: (212) 598-2441 Dick Netzer, Dean William B. Boise John M. Capozzola Charlton F. Chute Telen C. Hilling Sterling D. Spero, Emeritus Troy R. Westmeyer Port of New York Authority 111 Eighth Avenue 10011 Telephone: (212) 620-7207 Daniel L. Kurshan, Director of Administration Edward Gallas, Director of Personnel Cucens College of The City University of New York Department of Political Science 11367 Telephone: (212) Hickory 5-7500 Henry W. Morton, Chairman Regional Plan Association, Inc. 175 East 45th Street 10017 Telephone: (212) 682-7750 *John P. Keith, President William B. Shore, Vice President Boris S. Pushkarev, Vice President Richard T. Anderson, Asst. to the President Sheldon Pollack, Information Director Tri-State Regional Planning Commission 100 Church Street 10007 Telaphona: (212) 433-4200 J. Douglas Carroll, Jr., Exec. Director Richard S. DeTurk, Deputy Exec. Director & Director, Environment Publications Robert P. Storseth, Director, Management & Finance Stephen Carroll, Director, Regional Development John E. Mahoney, Director, Public Transportation Max Schwartz, Director, Informations Systems Edward F. Sullivan, Director, Systems Planning & Highways # **OLEAN** Olean Chamber of Commerce 225 Exchange Bank Building 14760 Telephone: (716) 372-4433 Jonathan B. Bates, Executive Vice President ### ROCHESTER Citizens' Tax League of Rochester and Monroe County, New York, Inc. (1935) 432 Powers Edg. 14614 Telephone: (716) 546-4340 Robert J. Menzie, Executive Director Rochester Center for Governmental & Community Research, Inc. 37 South Washington Street 14608 Telephone: (716) 325-6360 'Craig M. Smith, Director 'Friedrich J. Grasberger, Associate Director (Mrs.) Eleanor C. Parfitt, Administrative Assistant Alan J. Taddiken, Senior Research Analyst Donald E. Pryor, Senior Research Analyst (Mrs.) Jeraldine L. Draff, Research Analyst John F. Burke, Research Analyst David J. Coons, Research Analyst (Mrs.) Patti J. Kingston, Pesearch Analyst (Mrs.) Patti J. Kingston, Pesearch Analyst (Miss) Nancy H. Grr. Research Analyst David J. Wirschem, Research Analyst Rochester Chamber of Commerce Governmental Action Task Force 55 St. Paul Street 14604 Telephone: (716) 454-2220 Peter O. Allen, Manager #### SCHENECTADY Schenectedy Bureau of Municipal Research, Inc. (1927) 202 State Street 12305 Telephone: (518) FRanklin 4-1343 *Charles K. Bens, Executive Director # STEWART AIRPORT, N.Y. Mid-Hudson Pattern for Progress Building 702 12550 Telephone: (914) 562-1346 C. David Loeks, President ### SYRACUSE City of Syracuse Bureau of Research 218 City Hall 13202 Telephone: (315) 473-6600 *Clinton C. Byers, Director (Mrs.) Patricia Deacon, Research Assistant County of Orondaga Executive Department Division of Research and Development 603 County Onice Building 13202 Telephone: (315) 477-7645 *Frank T. Wood, Jr., Director Greater Syracuse Chamber of Commerce 1700—One
Mony Plaza 100 Madison St. 13292 Telephone: (315) 422-1343 *James B. Schneider, Manager, Governmental Relations Council Syracuse Governmental Research Bureau (1948) 809 Loew Building 13202 Telephone: (315) 471-4310 *Thomas A. Dorsey, Executive Director *(Mrs.) Sophie Polah, Assistant Director (Mrs.) Eugenia Dammers, Secretary Syracuse University 13210 Telephone: (315) 476-5541 Maxwell Graduate School of Citizenship and Public Affairs Alan K. Campbell, Dean Frank Marini, Associate Dean, and Director of Public Administration Guthrie Birkhead, Director of Metropolitan Studies H. George Frederickson, Associate Director of Metropolitan Studies # North Carolina # CHAPEL HILL University of North Carolina 25714 Department of Political Science John D. Martz, III. Chairman Institute for Research in Social Science Post Office Box 1167. Telephone: (919) 933-1214 James W. Prothro, Director Institute of Government Telephone: (919) 933-1304 John L. Sanders, Director ### CHARLOTTE Charlotte Chamber of Commerce 222 South Church Street 28202 Telephone: (704) 377-6011 Charles Crawford, Executive Vice-President #### CULLOWHEE Western Carolina University Office of the President P.O. Box 103 28723 Telephone: (704) 293-7313 Alex S. Pow, President S. Aaron Hyatt, Director for Institutional Research and Development #### DURHAM The L. Q. C. Lamar Society P.O. Box 4774. Duke Station 27706 Telephone: (919) 684-6774 Thomas H. Naylor, Executive Director # RALEIGH North Carolina Citizens Association P.O. Box 1430 27602 Telephone: (919) 828-0758 Edward L. Rankin, Jr., Executive Director and Secretary North Carolina League of Municipalities Post Office Box 3069 27602 Telephone: (919) 334-1311 S. Leigh Wilson, Executive Director State of North Carolina Office of Community Resources P.O. Box 27687 27611 Telephone: (919) 829-3174 Irvin Aldridge, Director # Ohio # AKRON Akron Area Chamber of Commerce Bureau of Research 137 South Main Street 44308 Telephone: (216) 253-9181 *John A. Earle, Director City of Akron Department of Finance City Hall 44308 Telephone: (218) 375-2317 *Dan P. Zeno, Director Department of Public Service City Hall 44308 Telephone: (218) 375-2270 *David W. Zimmer, Director # CINCINNATI Batter Housing League of Cincinnati 2400 Reading Road 45202 Telephone: (513)721-3160 *Charles G. Stocker, Director Linda L. Strauss Charter Research Institute 102 Carew Tower 45202 Telephone: (513) CHerry 1-0303 *Forest Frank, Director City of Cincinnati Menicipal Reference Library 224 City Hall 45202 Telephone: (513)421-5700 iiila O. Foley, Librarian Greater Cincinnati Chamber of Commerce 55 Central Trust Building 45202 Telephone: (513) 721-3300 George C. Hayward, Director, Planning & Development Department of Governmental Affairs Department of Governmental Affairs Telephone: (513) 721-3300 *Frederick E. Ewing, Director University of Cincinnati 45221 Department of Political Science Telephone: (513) 475-4245 *C. A. Harrell Institute for Urban Information Systems Telephone: (513) 475-3649 Fred J. Lundberg, Director # **CLEVELAND** Citizens League, The (1896) 1010 Euclid Bldz., Room 502 44115 Telephone: (216) CHerry 1-5340 Estal E. Sparlin, Director 'Blair R. Kost, Executive Assistant 'Robert Amstutz, Business Manager Case Western Reserve University Graduato Program in Public Management Science (1984) Telephone: (216) EN 8-2424 Nathan D. Grundstein, Director City of Cleveland Office of Budget and Management Room 111 City Hall 44114 Telephone: (216) 604-2454 Kimber A. Wald, Director David G. Currie, Budget and Management Analyst Robert Dreifort, Budget and Management Analyst Tom Farnsworth, Budget and Management Analyst Cleo Jordan, Accountant II Cuyahoga County Mayors and City Managers Association Cleveland State University 2323 Prespect Avenue 44115 Telephone: (216) 687-2135 Governmental Research Institute (1943) 1010 Euclid Building, Room 502 44115 Telephone: (216) CHerry 1-5340 *Batal E. Sparlin, Director 'Harold M. Peelle, Director of Research 'Biair R. Kost, Research Associate 'Robert C. Mayer, Research Associate 'Robert Amstutz, Business Manager Greater Cleveland Associated Foundation (a) National City Bank Building 44114 Telephone: (216) 861-3810 James A. Norton, President Greater Cleveland Growth Association (1932) Tax & Legislation Research Department 690 Union Commerce Building 44115 Telephone: (216) MAin 1-3300 "Gilbert D. Richmond, Manager Municipal Reference Library (1913) 211 City Hall 44114 Telephone: (216) 694-2656 Lee Wachtel, Librarian ### **COLUMBUS** Citizens Research, Inc. (1938) 21 East State Street, Suite 1000 43215 Telephone: (614) 221-4459 *Paul E. Hadinger, Executive Director Columbus Area Chamber of Commerce, The (1834) Research Department (1930) 50 West Broad St., P.O. Box 1527 43216 Telephone: (614) 221-1321 Ohio Chamber of Commerce Taxation and Research Department (1929) 820 Huntington Bank Building 43215 Telephone: (614)228-4201 *Norman H. Baker, Director James E. O'Leary, Fiscal Specialist *Edmond M. Loewe, Governmental Affairs Specialist I. John Reimers, Tax Specialist C. Emory Glander, Tax Counsel Joann Davidson, Research Librarian Ohio Citizens' Council for Health and Welfare, The 22 East Gay Street 43215 Telephone: (614) CApital 4-8146 W. James Greene, Executive Director Thane Griffin, Associate-Director, Government Relations Richard A Anthony, Associate-Director, Community Relations Leonard E. Ford, Consultant Ohio Municipal League, The 60 East Broad Street 43215 Telephone: (614) 221-4349 *John P. Coleman, Executive Director John E. Gotherman, Jr., League Counsel Ohio Public Expenditure Council (1941) 50 South Third Street 43215 Telephone: (614) 221-7733 Charles A. Calhoun. Executive Director Jack L. Whitmore, Research Director Ohio State University Division of Public Administration 1775 South College Read 43210 Telephone: (614) 422-8696 Clinton V. Oster, Associate Dean and Director State of Ohio Auditor of State State House 43216 Telephone: (614) 469-4971 William L. Williams Department of Urban Affairs 8 East Long Street 43215 Telephone: (614) 469-5462 Bruce L. Newman, Director Legislative Service Commission State House Telephone: (±14) 469-3615 David A. Johnston, Director Taxation, Research & Statistics Section 68 E. Gay Street 43215 Telephone: (614) 469-3960 James K. Hunter, Jr., Director Martha L. Saenger, Administrative Specialist Welfare, Statistics and Research Raymond F. McKenna ### DAYTON Community Research, Inc. (1957) Rm. 444, 333 W. First Street 45402 Telephone: (513) 224-9656 Jeptha J. Carrell, Executive Director William J. Schneider, Research Associate James J. Grandfield, Associate Dir.— Corrections John W. Kessler, Associate Dir.—Courts Gary Pence, Associate Dir.—Police Herbert J. Shubick, Research Associate Dayton Area Chamber of Commerce Sheraton-Dayton Rotel 45402 Telephone: (513) 224-9601 Marvin E. Purk, Executive Vice-President # KENT Kent State University Center for Urban Regionalism Lowry Hall 44242 Telephone: (216) 672-2232 Eugene P. Wenninger, Director # LIMA Lima Area Chamber of Commerce, The 53 Public Square 45801 Telephone: (419) 222-6045 Robert L. Tracht. Executive Manager Edward Hanks, Ass't. Manager (Mrs.) Carol Fry, Statistician #### **OXFORD** Miami University 45056 Department of Political Science Telephone: (513) 529-3151 Herbert Waltzer, Chairman # TOLEDO City of Toledo Office of City Auditor City Hall 43624 Telephone: (419) 255-1500 John J. Sheehy, City Auditor Commission of Publicity and Efficiency Municipal Reference Library 208 Fire and Police Alarm Building 43624 Telephone: (419) 255-1500 Ext. 471, 472 Edward L. Ways, Director Toledo Area Governmental Research Association Community Services Building 1 Stranahan Square 43604 Telephone: (419) CHerry 1-8621 *Frank L. Britt, Executive Secretary Putrick J. Kessler, Research Asst. ### WARREN Warren Area Chamber of Commerce P. O. Box 1147, 182 High St., N.E. 44482 Telephone: (216) 393-2565 Harold J. Mills, Manager # Oregon ### EUGENE League of Oregon Cities Post Office Box 5177 97403 Telephone: (503)342-1411 A. M. Westling, Planning and Public Works Consultant University of Oregon 97403 Telephone: (503) 342-1411 Bureau of Governmental Research and Service (1933) Kenneth C. Tollenaar, Director Bureau of Business and Economic Research Donald A. Watson, Director # **PORTLAND** City Club of Portland (1916) 505 Woodlark Building 97205 Telephone: (503) 223-7231 Mrs. W. E. Naylor, Executive Secretary Oregon Tax Research (1935) 1104 Loyalty Building 97204 Telephone: (503) 227-1149 George J. Annela, Manager Christopher L. Dudley, Research Director ### SALEM League of Oregon Citics (1925) 270 Cottage Street, N.E. 97301 Telephone: (503) 555-6987 *Donald L. Jones, Executive Secretary Karl A. Van Asselt, Assistant Executive Secretary Gary M. Carlson - David G. Finigan Oregon State Library (1905) 97310 Telephone: (503) 378-4243 Eloise Ebert, Librarian Dorothea B. Kelsay State of Oregon Local Government Relations Division Room 320, Public Service Building 97310 Telephone: (503) 373-3732 Robert K. Logan, Administrator # Pennsylvania #### **ALTOONA** Pennsylvania Economy League, Inc. Blair County Branch (1948) 1207 12th Avenue 16601 Telephone: (814) 942-1776 *Paul C. Dau, Executive Director #### **AVOCA** Economic Development Council of Northeastern Pennsylvania P.O. Box 777 18641 Telephone: (717) 457-7456 *Howard J. Grossman, Executive Director #### BEAVER Pennsylvania Economy League, Inc. Beaver County Branch (1943) 208 Beaver Trust Bldg. P.O. Box 325 15009 Telephone: (412) 774-6496 *Roger A. Perhacs, Executive Director ### BETHLEHEM Pennsylvania Economy League, Inc. Lehigh Valley Branch (1935) (Includes Lehigh & Northampton Counties) 520 East Broad St. 18018 Telephone: (215) 867-9532 ### BUTLER Pennsylvania Economy League, Inc. Butler County Branch (1937) 403 Mellon Bank Building 16001 Telephone: (412) 287-5610 *Robert W. Cyphert, Executive Director #### GREENSBURG Pennsylvania Economy League, Inc. Region I 712 First National Bank Building
15601 Telephone: (412) 634-3360 *Dennis R. Adams, Executive Director *Howard J. Barnhart, Assistant Director #### **HARRISBURG** Commonwealth of Pennsylvania Office of Administration Ronald G. Lench, Secretary Department of Education Education Bldg. 17126 Telephone: (717) 787-52220 John C. Pittenger, Secretary of Education Neal V. Musmanno, Deputy Secretary of Education Office of Educational Research and Statistics Paul B. Campbell, Director Bureau of Educational Research Robert B. Hayes, Director Department of Community Affairs South Office Building *William H. Wilcox, Secretary Bureau of Research and Program Development Telephone: (717) 787-7300 James W. Guest, Director Pennsylvania Economy League, Inc. (1932) State Division Post Office Box 105 17108 Telephone: (717)234-3151 *John W. Ingram. Director *Robert S. Lewis. Assistant Director *William F. Zaun. Research Analyst *Lewis B. Lee, Research Analyst Pennsylvania League of Cities 2608 North Third Street—P. O. Box 5096 17110 Telephone: (717) 236-9469 Richard G. Marden, Executive Director William B. Harral. Assistant Executive Director for Legislation *Robert J. Middleton, Assistant Executive Director for Research and Information Patrice A. Lenker Pennsylvania Municipal Authorities Association 2941 North Front Street 17110 Telephone: (717) 233-7696 J. Edwin Slupecke, Executive Director Pennsylvania Municipal Utilities Association 127 Locust Street 17101 Marian Schwalm Furman Pennsylvania State Association of Boroughs 2941 North Front Street 17110 Telephone: (717) 236-9526 Charles F. LeeDecker, Executive Director Patricia Crawford, Assistant Executive Director for Research Pennsylvania State Chamber of Commerce 222 North Third Street 17101 Telephone: (717) 233-0441 Robert Hibbard, Executive Director Research Bureau (1916) *Nevin A. Schall *Harry A. Stutzman *John R. Whipple State of Pennsylvania State Tax Equalization Beard Room 513, Finance Building 17108 Telephone: (717) 787-5950 Warren H. Barton, Director #### LANCASTER Pennsylvania Economy League, Inc. Lancaster County Branch (1935) 30 West Orange Street 17603 Telephone: (717) 397-8919 *William C. Wagner, II. Executive Director ### **NEW CASTLE** Greater New Castle Association. Inc. (1939) First Federal Plaza 25 N. Mill Street 16101 Telephone: (412) 654-5593 Victor J. Andrew, Executive Vice President #### NEWTOWN Pennsylvania Economy League, Inc. (ED) Bucks County Branch (1952) 10-B South State Street 18940 Telephone: (215) WOrth 8-3868 *Michael P. Tyler, Branch Manager ### NORRISTOWN Pennsylvania Economy League, Inc. Monigomery County Branch (1932) 400 West Johnson Highway 19401 Telephone: (215) 279-6894 *George F. Sears, Branch Manager # **PHILADELPHIA** Bureau of Municipal Research (1908) Liberty Trust Building Broad and Arch Streets 19107 Telephone: (215) LOcust 4-6250 Edwin Rothman. Secretary (For other staff see Pennsylvania Economy League, Eastern Division) Citizens' Budget Committee 920 Western Saving Fund Bldg. Broad and Chestnut Streets 19117 Telephone: (215) KIngsley 5-2752 City of Philadelphia Department of Finance 1420 Municipal Services Building Telephone: (215) MU-6-6140 Lennox L. Moak, Director Committee of Seventy, The (1994) Suite 910, 1420 Walnut St. 19102 Telephone: (215) KI 5-7017 Michael von Moschzisker, Executive Secretary Crime Prevention Association of Philadelphia (1932) 250 South Broad Street 19102 Telephone: (215) KI 5-5221 Arthur Gewirtz, Executive Director Free Library of Philadelphia Department of Public Documents Logan Square 19103 Telephone: (215) MU 6-5339 (Mrs.) Jeanne H. Mahler, Head Clifford Crowers Greater Philadelphia Chamber of Commerce 1528 Walnut Street 19102 Telephone: (215) PE 5-9320 Robert S. Barr. Executive Director, Research & Publications Bureau Greater Philadelphia Movement 920 Western Savings Fund Building Bread and Chestnut Street 19107 Telephone: (215) Kingsley 5-2752 *William L. Rafsky, Executive Director James A. Lineberger, Associate Executive Pennsylvania Economy League, Inc. Eastern Division (1933) Liberty Trust Building Broad and Arch Streets 19107 Telephone: (215) LOcust 4-6250 *Edwin Rothman, Director of Research *Mitchell J. Hunt, Supervisor, County Branch Activities *John N. Carson, Senior Research Associate *Edgar Rosenthal, Senior Research Associate *Marjorie L. Jacob, Research Associate A. L. Gehman, Consultant *Ellen Brennan, Librarian . Temple University 19122 Telephone: (215) 787-7309 William G. Willis, Vice-President and Secretary Bureau of Economic & Business Research' (1943) Telephone: (215) 787-8101 Michael H. Moskow, Director University of Pennsylvania 19104 The Fels Center of Government (1970) Telephone: (215) 594-8212 Julius Margolis, Director Government Study Center Morton Lustig, Administrator # PITTSBURGH ACTION-Housing, Inc. (1987) 2 Gateway Center 15222 Telephone: (412) 281-2102 Bernard E. Loshbough, Executive Director Allegheny Conference on Community Development 200 Ross Street 15219 Telephone: (412) 281-1890 Robert B. Pease, Executive Director John J. Grove, Assistant Director Chamber of Commerce of Greater Pitisburgh Chamber of Commerce Bldg. 15213 Telephone: (412) 391-3400 John H. McLain, Executive Vice President Ruth Ann Nickel, Librarian Civic Club of Allegheny County (1895) William Penn Hotel 15230 Telephone: (412) 281-5343 Mrs. Jacki Garger, Administrative Secretary Duquesne University Bureau of Research in Business, Community & Government Affairs (1957) 600 Forbes Avenue 15219 James Acklin, Director Health and Welfare Association of Allegheny County 200 Ross Street 15219 Telephone: (412) 261-6010 Elmer J. Tropman, Executive Director Pennsylvania Economy League, Inc. Western Division (1933) 200 Fourth Avenue 15222 Telephone: (412) 471-1477 *Howard B. Stewart, Director *Emery P. Sediak, Assistant Director and Director of Research *Richard L. Conaway, Director-Urban Transportation Research *William H. Eisinger, Assistant Research Associate *Armistead L. Guthery, Director-Urban Research *J. Paul Riden, Jr., Assistant Director of Research and Director of Branch Activities *Frank J. Volpe, Director-Municipal Research *Keith C. Robb, Research Associate Pittsburgh Regional Planning Association 564 Ferbes Avenue 15219 Telephone: (412) 391-4120 William R. B. Froehlich, Executive Director University of Pittsburgh Graduate School of Public and . International Affairs *Thernational Adalts 704 Bruce Hall 15213 Telephone: (412) 621-3500, Extension 7194 *Lawrence C. Howard, Dean Thomas J. Davy, Associate Dean Joseph I. Coffey, Associate Dean Donald C. Stone, Dean Emeritus Department of Urban Affairs Joseph E. McLean, Acting Director Gwendolyn Bell Clifford C. Ham Earl Onque Clark D. Rogers Anatole A. Solow Institute of Urban Policy and Administration (1944) Joseph A. James, Director Department of Public Administration William F. Matlack, Director Department of International Affairs Daniel S. Cheever, Director Department of Economic and Social Development Hamlin Robinson, Acting Director Graduate Center of Public Works William D. Brinckloe, Director School of Education *David H. Kurtzman # READING Pennsylvania Economy League, Inc. Berks County Branch (1936) 18 North 5th Street 19601 Telephone: (215) 374-2445 *Charles W. Watters, Executive Director ### SHARON Pennsylvania Economy League, Inc. Mercer County Branch (1945) 811 E. State St. 16146 Telephone: (412) 342-3074 *Harry McIndoe, Executive Director # UNIONTOWN Pennsylvania Economy League, Inc. Fayette County Branch (1938) 519 Gallatin National Bank Building 15401 Telephone: (412) 438-1341 *Michael D. Costa, Executive Director # UNIVERSITY PARK Pennsylvania State University, The Institute of Public Administration 206 Social Sciences Building 16002 Telephone: (314) 865-2536 Robert J. Mowitz, Director Robert LaPorte, Jr., Assistant Director #### WASHINGTON Pennsylvania Economy League, Inc. Washington-Greene County Branch (1943) 647 Washington Trust Building 15301 Telephone: (412) 222-2190 David J. Kolesky, Executive Director # WEST CHESTER Pennsylvania Economy League, Inc. Chester County Branch (1935) 7 Green Tree Building 19380 Telephone: (215) OWen 6-2217 Peter K. Rosengarten, Branch Manager # WILKES-BARRE Pennsylvania Economy League, Inc. Central Division (1940) 706 First National Bank Building 18701 Telephone: (717) 824-3559 *Raymond R. Carmon, Director *William D. Jonathan, Research Associate *Harold R. Heesch, Research Analyst Wilkes College Institute of Regional Affairs (1951) Telephone: (717) 824-4651 *Andrew Shaw, Director *Philip R. Tuhy, Associate Director Walter H. Nichoff, Associate Director # Rhode Island # KINGSTON University of Rhode Island 02881 Bureau of Government Research Telephone: (401) 792-2158 John O. Stitely, Director James C. Pritchard, Asst. Director Joseph Coduri Anna G. Haggarty Robert W. Sutton, Jr. # **PROVIDENCE** Brown University 02912 Curriculum in Public Administration Telephone: (401) 863-2825 Elmer E. Cornwell, Jr., Chairman, Political Science Department Rhode Island Public Expenditure Council (1943)150 Francis Street 02903 Telephone: (401) 421-9493 Roger L. Slater, President *Ronald R. Belair, Director of Research *Thomas R. Farley, Senior Researcher Rhode Island State Library Legislative Reference Bureau (1907) State House 02903 Telephone: (401) 277-2473 Elliott E. Andrews, State Librarian State of Rhode Island and Providence Plantations Department of Administration Division of Budget 111 State House 02903 Telephone: (401) JAckson 1-7100 John C. Murray, Budget Officer Department of Community Affairs 269 Promenade Street 02908 Frederick C. Williamson, Director Department of Social Welfare 40 Fountain Street 02903 Ruth A. Coogan, Research Supervisor House Finance Committee William J. DeNuccio, Fiscal Advisor # South Carolina #### CHARLESTON Charleston Trident Chamber of Commerce P. O. Box 975 29402 Telephone: (803) 577-2510 Robert L. Frank, Research Director ### COLUMBIA Municipal Association of South Carolina Suite 900, Columbia Building P. O.
Box 306 20202 Telephone: (803) 253-8368 J. N. Caldwell, Jr., Executive Vice President State of South Carolina Division of Local Government Governor's Office, State House 29201 Telephone: (203) 758-3606 Woody Brooks, Executive Director University of South Carolina 29208 Bureau of Governmental Research Telephone: (803) 777-8156 James E. Larson, Director Robert Stoudemire, Associate Director W. Hardy Wickwar C. Blease Graham # Jexas # **AUSTIN** Legislative Reference Library State Capitol 78711 Telephone: (512) GReenwood 5-4626 James R. Sanders, Director Southwest Educational Development Laboratory Commodore Perry Hotel, Suite 550 Commodore Perry Hotel, Suite 550 Telephone: (512) 476-6861 *Charles Rodman Porter, Asst. Dep. Exec. Dir. (Support Department) Texas Legislative Council (1949) Capitol Station—Box 12123 Telephone: (512) 475-2736 Robert E. Johnson, Executive Director John T. Potter, Asst. Director (Mrs.) Julia Faye Neel, Director of Research (Miss) Floy M. Johnson, Director of Special Projects W. B. Wilmot, Director of Legal Affairs Texas Municipal League 801 Vaughn Building 78701 Telephone: (512) GReenwood 8-6601 Dick Brown, Acting Executive Director Texas Research League P.O. Box 12456 78711 403 East 15th Street 78701 Telephone: (512) 472-3127 *James W. McGrew. Executive Director *Glenn H. Ivy. Research Director *Homer E. Scace, Senior Research Associate *Robert E. Norwood. Research Associate *Alan E. Barnes. Research Associate *Leighton Bearden. Research Analyst *Bill W. Bownds. Research Analyst *Wilburn French. Research Analyst *Lynn M. Moak, Research Analyst *Lynn M. Moak, Research Analyst *John R. Kennedy, Research Analyst *N. David Spurgin. Research Analyst *N. David Spurgin. Research Analyst *Brenda Lee, Publications Assistant University of Texas Lyndon B. Johnson School of Public Affairs Sid Richardson Hall 78712 Telephone: (512) 471-5711 John A. Gronouski, Dean Alexander L. Clark, Associate Dean Nicholas P. Thomas, Director, Office of Research Bureau of Business Research (1926) Stanley A. Arbingast, Director #### DALLAS Greater Dallas Planning Council 2021 Fidelity Union Tower 75201 Telephone: (214) 748-2274 William L. Moore, Executive Director # **HOUSTON** Civil Service Commission 900 City Hall 77002 Telephone: (713) 222-3542 H. S. Lanier, Director Houston Chamber of Commerce Public Affairs/Transportation Dept. Chamber of Commerce Building P. O. Box 53600 77052 Telephone: (713) CApitol 7-5111 *Frank R. Kenfield, Manager Houston-Galveston Area Council 3311 Richmond Avenue 77006 Telephone: (713) 521-9573 James E. White, Jr., Staff Assistant Southwest Center for Urban Studies 1200 Southmore 77004 Telephone: (713) 526-6301 *Ralph W. Conant. Director George W. Strong. Assistant Director Tax Research Association of Houston and Harris County, Inc. 414 Capital National Bank Building 77002 Telephone: (713) 222-0349 *George L. Nichols, Executive Director University of Houston Institute for Urban Studies 33201 Cullen Blvd, 77004 Telephone: (713) 748-6600, ext. 685 *Ralph W. Conant, Director *John E. Bebout, Program Director George W. Strong, Assistant Director #### LUBBOCK - Texas Tech University 75409 Curriculum in Public Administration (1936) Telephone: (806) 743-3121 Jack Hopkins, Chairman Government Dept. # SAN ANTONIO Research and Planning Council (1948) Three Americas Eigg., Suite 626 78205 Telephone: (512) CApital 7-2591 Walter Stoneham, Executive Vice-President ### TEXAS CITY Galveston County Research Council (1959) 622 Sixth Street North P. O. Drawer D 77590 Telephone: (713) 948-1724 Craig Foster, Executive Director George T. Odom, Research Associate (Mrs.) Billie C. Macik, Research Assistant # $V_{irginia}$ #### **CHARLOTTESVILLE** University of Virginia Institute of Government 207 Minor Hall 22903 Telephone: (703) 924-3396 Weldon Cooper, Director ### RICHMOND Commonwealth of Virginia Advisory Legislative Council (1936) State Capitol 23219 John B. Boatwright, Jr., Secretary Division of State Planning and Community Affairs 1010 Madison Bldg. 23219 Telephone: (703) 770-3785 Robert H. Kirby, Director Department of Taxation Division of Research (1929) W. B. Harvie, Jr., Director Greater Richmond Chamber of Commerce Research Department 616 East Franklin St. 23219 Telephone: (703) 649-0373 E. M. C. Quimby, Director of Research Merit System Council (1943) 300 State Finance Building 23219 Telephone: (703) 770-3809 W. Richard Lawrence, Supervisor William C. Baber, Exam. Sup. Virginia Municipal League (1905) 700 Travelers Building 22219 Telephone: (703) 643-0264 Harold I. Baumes, Executive Director Virginia State Chamber of Commerce (1924) Research Department 611 East Franklin Street 23219 Telephone: (703) 643-7491 Edwin C. Luther, III, Director, Public Affairs & Research # Washington # MERCER ISLAND Tax Research of Washington 9724 Mercerwood Drive 98040 Telephone: (206) 232-1630 *John H. Current ### **OLYMPIA** State of Washington 98504 Department of Revenue Telephone: (206) 753-5512 George Kinnear, Director Donald R. Burrows, Ass't Director R. Donn Smallwood, Chief, Research & Statistics Office of Program Planning & Fiscal Management Public Health Building Telephone: (206) 753-5451 'Donald L. Sorte. Program Coordinator Washington State Library (1853) 98501 Telephone: (206) 753-5590 Maryan E. Reynolds, State Librarian Gene Bismuti, Chief of Readers Services Donald P. Duncan, Head, Reference & Interlibrary Loan Washington State Legislative Council Legislative Building 98504 Telephone: (206) 753-6826 James W. Guenther, Executive Secretary John B. Welsh, Jr., Attorney Tim Burke Victor B. Moon Stan Finkelstein Washington State Research Council 16/39 Capitol Way 98501 Telephone: (200) 357-6643 "W. Phillip Strawn, Executive Director William B. Pilkey, Research Director Lawrence K. Martin, Research Analyst # PULLMAN Washington State University Curriculum in Public Administration 99163 Telephone: (509) 335-4613 Paul L. Beckett, in charge James A. Thurber K. T. W. Swanson Bureau of Economic & Business Research John A. Guthrie, Director Department of Political Science—Division Of Governmental Studies & Services Telephone: (509) 335-3329 James A. Thurber, Director ### SEATTLE Association of Washington Cities (1833) 93105 4719 Brooklyn Avenue, N.E. Telephone: (206) 543-9050 Chester Biesen, Executive Director Evergreen Safety Council 022 John Street 98109 Telephone: (206) MAin 2-1670 M. O. Christman, Exec. Vice Pres. Municipal League of Seattle and King County (1911) 725 Central Building 98104 Telephone: (206) MAin 2-8333 Walter W. Davis, Executive Secretary William L. Massey, Editor & Research Secretary Municipal Reference Library (Branch of Seattle Public Library) 307 Municipal Building 93104 Telephone: (206) 583-2617 Harold D. Wilson, Librarian Marjorie R. Henry Erica Wilhelm University of Washington 98105 Division of Community Development 316 Lewis Hall Harold L. Amoss. Director Bureau of Governmental Research and Services 3935 University Way N.E. Robert H. Pealy, Director Center for Urban and Regional Research Telephone: (206) 543-7793 Edward L. Ullman, Acting Director Department of Political Science 201 Engineering Annex David W. Miner, Chairman Graduate School of Public Affairs 226 Smith Hail Brewster C. Denny, Decn Institute for Administrative Research 262 Smith Hall George Shipman, Director #### SPOKANE Municipal League of Spokane (1951) W. 921 Sprague, Room 10 99201 Telephone: (509) MAdison 4-6213 Charles A. Wendtland, President Donna Kuder, Executive Secretary Spokane Taxpayers Association West 704 First Avenue 99204 Telephone: (509) RIverside 7-3171 William D. Roberts, Executive Director #### TACOMA Pierce County Taxpayers Association (1931) 619 Security Building 98402 Telephone: (206) MArket 7-0318 # Wisconsin # MADISON League of Wisconsin Municipalities (1898) 433 West Washington Avenue 53703 Telephone: (608) 255-7291 Ed Johnson, Executive Director Public Expenditure Survey of Wisconsin (1939) 615 East Washington Avenue 53703 Telephone: (668) ALpine 5-6767 *Glenn D. McGrath, Director Duane Riggert, Assistant Director Bernard C. Sullivan Arch Ely, Administrative Advisor State of Wisconsin Legislative Council (1947) State Capitol 53702 Telephone: (603) 256-1304 Bonnie Reese, Acting Executive Secretary Legislative Reference Library (1901) H. Rupert Theobald, Chief University of Wisconsin 53706 Institute of Governmental Affairs Telephone: (608) 262-3150 Edward V. Schten, Director Ruth Baumann James R. Donoghue A. Clarke Hagensick Albert D. Hamann Richard L. Stauber Donald B. Vogel John A. Martin John C. Roberts Fred A. Wileman Frank J. Crisafi Wisconsin State Chamber of Commerce 411 W. Main Street 53701 Telephone: (608) ALpine 7-1088 Kenneth W. Haagensen, Executive Vice President Phil Sellinger, Director of Research Wisconsin Taxpayers Alliance (1932) 335 West Wilson Street 53700 Telephone: (603) 255-4531 C. K. Alexander, Exec. Vice President James R. Morgan, Vice President, Research Services *John P. Reynolds, Vice President, Field Services Beulah M. Poulter, Research Associate Rindert Kiemel, Jr., Research Associate Donald T. Ripple, Educational Coordinator ### MILWAUKEE Citizens' Governmental Research Bureau, Inc. (1913) 125 East Wells Street 53202 Telephone: (414) 276-8240 *Norman N. Gill, Executive Director City Club of Milwaukee (1909) 759 North Milwaukee Street 53202 Suite 523 Leo Tiefenthaler, Civic Secretary University of Wisconsin-Milwaukee 53201 Department of Political Science Cornelius Cotter, Chairman Depertment of Urban Affairs 608 Bolton Teiephone: (414) 228-4751 Haroid Rose, Chairman Institute of Governmental Affairs 554 Bolton Telephone: (414) 228-4754 A. Clarke Hagensick, Associate Director Donald B. Vogel, Assistant Director Sarah C. Ettenheim Wisconsin Manufacturers' Association 324 E. Wisconsin Avenue 53202 Telephone: (414) 271-9428 *Paul E. Hassett, Executive Vice President #### APPENDIX D # **U.S.** Department of Labor **Bureau of Labor Statistics** John Pitrgerald Kennerly
Festeral Billy Government Center - Room 1803 A Boston, Mars. 02202 REGION II. NEW YORK 17/15 Brokelivay Suite 1400 New York, N.Y. 10036 Prills Market Street P.O. Door Ection (2 p. 1910) i. Phylodotechia C. HEGIOLDI PHILADELPHIA HEGIONEV ATLANTA 3 371 Paschitres Street, by E. Atlanta, Ga. 30309 REGION V - CHICAGO 230 S. Desrborn Street Chicago, III. 60604 REGION VI DALLAS 555 Griffin Sq., 2nd FI Dallas Tex 75202 911 Wishort Street Ransas City 540-64106 REGIONS VIEW VIEW KANSAS CITY REGIONS IX & X SAN FRANCISCO 450 Golden Gate Avenue, Box 36017 Sanificancisco, Catif. 94102 #### **COOPERATING STATE AGENCIES** State and Local Area Unemployment Statistics Program (LAUS), Current Employment Statistics Program (CES), and Labor Turnover Statistics Program (LTS) #### OL8 Region -Department of Industrial Relations Undustrial Relations Building, Montgomery 36104 IV ALABAMA X ALASKA -Employment Security Division Department of Latin P.C. Box 3 7000 Juneau 99802 IX ARIZONA Department of Economic Security, P.O. Box 29020, Phoenix 85038. VI ARKANSAS Employment Security Division, Department of Labor, P.O. 80+ 2981, Little Rock 72203 IX CALIFORNIA Employment Development Department, P.O. Rox 1979, Sacramento 9580B (LAUS and CES) VIII COLORADO Division of Employment, Department of Lacur and Employment, Room 222, 1210 Sherman Street Denver 80203 I CONNECTICUT Employment Security Division, Labor Department, 200 Fally Brook Buulevard, Wethersheld 06109 III DELAWARE Department of Lebor, 801 West Street, Wilmington 19899 III DIST. OF COL. Office of Administration and Manager and Service (EC. Manpower Administration, Room 626, 500 C Street, N.W., Washington 20001. IV FLORIDA Distributed Employment Security, Department of Consumer Caldwell Building Callabasee 37:304 IV GEORGIA Employment Sucurity Agency, Department of Falon, 254 Washington Street, S.W., Atlanta 30334 IX HAWAII Department of Labor and Industrial Helations Fig. Box 3680, Honol du 96811 IDAHO Department of Employment, P.O. Box 35, Boise 85707. ILLINOIS Bureau of Employment Security, Department of Lation, 910 South Michigan Avenue, Chicago 60605 V INDIANA Employment Sciunity Division, 16 North Senate even on Indonagratis 46204 AWOL HY Employment Second, Commission (1000) hast count Assence the Moores 50319 VII KANSAS Employment Social ty Division, Department of Latine, 401 Topaka Boulevard, Topaka 66503 IV KENTUCKY Department of Forman Resources, 275 East Main Street, Frankforr, Kentucky, 40601 VI LOUISIANA Department of Employment Security, P.O. dos 44094. Capitol Station, Baton House 70804. Employment Security Commission, Department of Mangasser Affairs, 20 Union Street, Augusta 04330 Department of Human Resources, 1100 North Entain Street, Baltimore 21201 I MAINE HI MARYLAND I MASSACHUSETTS Division of Employment Security, Charles F., Horley, Engloyment security Building, Government Conter Boston 02114 V MICHIGAN Employment Security Commission, Department of Embor, 7310 Wood-sort Associa, Defroit 43202 V MINNESOTA Department of Employment Services, 390 North Hobert Street, St. Paul 55101 IV MISSISSIPPI Employment Socurity Colon, strong P.O. Box 18,996, and son 39,706 VII MISSOURI Division of Emproyment Secondly, Department of Jahle and Indiastrial Helations, P.O. Box 59, Jeffelson City 65101 VIII MONTANA Employment Society (Division - Department of Cabon and Industry, E.O. Box 1728, Helena 59601 Distrion of Employment, Department of Latin Co. Co. Pos. 94600 State House Station, Lincoln 68503 VII NEBRASKA Employment Security Department (1) Cox 607 Circon City 89701 IX NEVADA Department of Employment Security, 32.5 with Main Street, Concord (1330). NEW HAMPSHIRE II NEW JERSEY Department of Labor and Industry, 202 for a fatch Porza, Trenton 08625 VI NEW MEXICO Employment Security Commission F. C. 16 - 1978. Attinguetim B/101 II NEW YORK Division of Employment, N.Y. State Consertment of Fabric, State Campus, Building 12, Albany 12301 VIII NORTH DAKOTA V OHIO VI OKLAHOMA X OREGON IV NORTH CAROLINA III PENNSYLVANIA I RHODE ISLAND IV SOUTH CAROLINA VIII BOUTH DAKOTA IV TENNESSEE VI TEXAS VIII UTAH 1 VERMONT III VIRGINIA X WASHINGTON HI WEST VIRGINIA W WISCONSIN VIII WYOMING Employment Security Commission Witi Hogers Melion in Office Building, Oktahoma City 73105 Employment Division. Department of Haroni fless acces. Hoom 402: Lation and Industries Building, Salern 97310 Bureau of Employment Security. Department of Lanur and Industry. Seventh and Forster Streets, Division of Research and Statistics, Burkey of Employment Services, 1455, Front St., Columbus 40216 Herristoury 17121 Division of Statistics and Census, Department of Latine, Hoom 117, 235 Promotede Street, Providence 02908 (CES) Department of Employment Security, 24 Mason Street, Providence 02903 (LAUS and LTS) Employment Security Commission P.O. Box 995 Colombia 29202 Denorthment of Labor, P.O. Bux. 1730, Apertuon. 57401 Capariment of Employment Security, floors 519. Contell Hull Office Building, Nativille 37219 Employment Commission, TEC Building, 15th and Congress Avenue, Aust in 78778 Department of Employment Security P.O. Box 11249: Selt Lake City, 84147. Deportment of Employment Security P.O. Bir. 488, Montpelier 05602 Employment Security Commission & O. Marc 25103, Baleigh 27611 Employment Scharty Bureau P.O. Pos. 1547. Bishack 58505 Division of Rosearch and Statistics, Department of Latine and Industry, P.O. 80x 12064, Richmond 20241 (CES) Employment Commission, P.O. Box 1358, Richmond 20211 (LAUS and ETS) Employment Security Department, 1007 South Washington Street, Olympia 98501 Department of Employment Security, State Office Building, 112 Californ & Avenue, Charleston 25305 Department of Industry, Lation and Human Relations, P.O. Box 7944, Madison 53707 Employment Security Commission P.O. Box 2160 Casper 82601 # THE CEIP IMPACT MODEL TECHNICAL MANUAL Prepared by Prepared for The Office of Coastal Zone Management, NOAA Contract No. 7-35174 JUNE 1977 # CONTENTS | | | | | | | | Page | |------|---------------------------|------|----|-------|----|-------|------| | ı. | Introduction | | | | | | 1 | | II. | List of Variables | | | | | | 2 | | III. | Equations and Calculation | ns | | | | | 8 | | IV. | Comments | | | | | | 14 | | v. | Coding Forms | (to | be | added | by | OCZM) | | | VI. | Computer Program | (to- | be | added | bу | OCZM) | | ### I. INTRODUCTION This manual provides the technical elements of the CEIP Impact Model. Variables are listed in the order they are used in the equations. Data sources or derivations for each variable are also indicated. Equations are listed in the order they are used in the Impact Model. Each equation is listed under a heading indicating the purpose for which the equation is used. Copies of coding forms and the computer program used for calculations are included so that analysts may verify how the variables and equations are utilized in the Impact Model. ### II. LIST OF VARIABLES BLRt baseline revenues, excluding revenues derived from borrowing or project-related grants source: t=1,...,10 Schedule 4.1 data t=11,...,30 Equation 3 forecast BLR_{t-1} baseline revenues, as above, lagged one year Yt per capita income for specific locality (or its county area) source: t=1,...,10Schedule 3.4 data t=11,...,30 Equation 1 forecast Pt local population source: t=1,...,10 Schedule 3.4 data t=11,...,30 Equation 2a forecast S number of students source: Schedule 3.7 data t=1,...,10 t=11,...,30 Equations 2a and 2b ΔPt defined as P_t - P_{t-1} • • • • • • • defined as Y_t - Y_{t-1} ΔY₊ • • • • • • • BLX baseline expenditures, excluding expenditure of project grants or borrowed funds source: t=1,...,30 Equation 4 $\boldsymbol{\mathcal{E}}_{\mathtt{it}}$ disturbance term of ith equation t time, range 1 to 30. Year 10 is PRESENT YEAR estimated coefficient (from Equation 3) of the effect of a change of one person on revenues collected, i.e., $\delta BLR_t / \delta \Delta P_t = \hat{c}_3$ source: Equation 3 CFE_t construction employment source: t=11,...,30 Schedule 1.1 data OFE, operating employment source: t=11,...,30 Schedule 2.1 data ICFE, indirect construction facility employment source: t=11,...,30 Schedule 1.1 data IOFE indirect operating facility employment source: t=11,...,30 Schedule 2.1 data ${\tt FE}_{\sf t}$ total facility employment source: t=11,...,30 Equation 5c DFE_t direct facility employment source: t=11,...,30 Equation 5a indirect facility employment (new employees in local businesses supplying the energy facility) source: t=11,...,30 Equation 5b FEG_t facility employment in local jurisdiction source: t=11,...,30 Equation 6 DIST distance from energy facility site to population center of government source: Schedule 3.1 data Z gravity distance source: Equation 6a population within the Jth ring POPJ J = 1, 2, 3, 4, 5, 6 (e.g. POP30=population within the 20 to 30 mile ring) source: Schedule 3.1 data POPG population within the government for gravity model year source: Schedule 3.1 data SUMY calculation for gravity model source: Equation 6b J jobs within the local community source: Schedule 3.3 data k employment multiplier source: Equation 7 residential employment from facility source: Equation 8 U unemployment source: Schedule 3.3 data السارات الدارات الماسطينية ومبولا فيهوي والما e "labor market tightness" coefficient source: Equation 9 PNat'l population nationally source: use 215,396,000 employment nationally source: use 96,817,000 E employees residing in local jurisdiction (may work elsewhere) source: Schedule 3.3 data NRFE new residential facility employment source: t=11,...,30 Equation 10 NP_t new population associated with the energy facility source: t=11,...,30 Equation 11 \mathtt{WP}_{t} total population with the energy facility source: t=11,...,30 Equation 12 s student-population multiplier source: use .25 NS_t new student population source: t=11,...,30 Equation 12a
RPT_t residential property tax revenues source: t=11,...,30 Equations 13a, c, d m proportion of taxes exported source: Schedule 4.7 data proportion of taxes from residential property tax q source: Schedule 4.5 data ht adjustment for property tax base lag with large population growth source: Equation 13b Lt value of land purchased for energy facility in given year t OR value of completed physical facility in year subject to property tax (if both occur, then the sum) source: t=11,...,30 Schedule 1.2 data g assessment ratio for business property source: Schedule 4.4 data T_{1,t} business property tax rate source: t=11,...,30 Schedule 4.2 data $\mathtt{BPT}_{\mathsf{t}}$ business property taxes source: t=11,...,30 Equations 14a, 14b RET_t real estate transfer taxes source: t=11,...,30 Equation 15 ^T2,t real estate transfer tax rate source: t=11,...,30 Schedule 4.2 data and the same of the same STt sales taxes source: t=11,...,30 Equation 16 T_{n,t} other tax rates n=3,...,J where J is the total number of taxes source: t=11,...,30 Schedules 4.2 and 4.6b data BTn other tax bases n=3,...,J (e.g., sales tax base, etc.) source: Schedules 1.3 and 2.2 data user charges, in appropriate year UT₊ Schedule 4.8 data source: t=11,...,30 other revenue sources from taxation, not explicitly covered in property tax, sales tax, etc. source: Schedule 4.9 data OBT other business taxes source: t=11,...,30 Equation 17 WX_{t} expenditures with the energy facility impact source: t=11,...,30 Equation 18 revenues with the energy facility impact source: t=11,...,30 Equation 19 NFI₊ net fiscal impact source: t=11,...,30 Equation 20 CANADA ST TO SERVED #### III. EQUATIONS AND CALCULATIONS #### SECTION I. BASELINE FORECASTS Forecast BLR_t, Y_t , P_t , and BLX_t for t = 11, ..., 30. Use ordinary least squares to estimate Equations 1, 2a and 3. Then apply the estimated equations to predict the above variables for t = 11, 30. Equation 1. Forecast per capita income, t=11,...,30. (1) In $$Y_t = a_1 + b_1 t + \mathcal{E}_{1t}$$ Equation 2a. Forecast population, t=11,...,30. (2a) In $$P_t = a_2 + b_2 t + \xi_{2t}$$ Equation 2b. Forecast student enrollments. (2b) $S_t = P_t$ in Equations 2a and 3. Equation 3. Forecast baseline revenues, t=11,...,30, given above forecasts for the independent variables: (3) BLR_t = $$a_3 + b_3$$ BLR_{t-1} + $c_3 \Delta P_t + d_3 \Delta Y_t + \mathcal{E}_{3t}$ Equation 4. Forecast baseline expenditures, t=11,...,30. (4) $$BLX_t = BLR_t$$ (NOTE: Save estimated coefficient above) #### SECTION II. WITH IMPACT FORECASTS (CALCULATIONS) Step 1. Forecast new population (impact) as result of energy installation: Equation 5. Total facility employment. (5a) $$DFE_{+} = CFE_{+} + OFE_{+}$$ definition (5c) $$FE_t = DFE_t + IFE_t$$ definition Equation 6. Allocate new employment to the local jurisdiction. Allocation by gravity model and given data: (6a) $$z = \begin{cases} DIST & if DIST \leq 20 \\ [20 + 3(DIST - 20)] & if DIST > 20 \end{cases}$$ (6b) SUMY = $$(POP10/5) + (POP20/15) + (POP30/35) + (POP40/65)$$ + $(POP50/95) + (POP60/125) + (POPG/Z)$ (6c) $$FEG_t = \begin{bmatrix} POPG/Z \\ SUMY \end{bmatrix}$$ FE_t Equation 7. Employment multiplier. (7) If $$J_t < 50$$ then $k = 1.0$ If $50 \le J_t < 200$ then $k = 1.1$ If $200 \le J_t < 500$ then $k = 1.2$ If $500 J_t < 2000$ then $k = 1.3$ If $2000 \le J_t < 5000$ then $k = 1.4$ If $J_t \ge 5000$ then $k = 1.5$ Equation 8. Residential employment from facility. (8) $$RFE_t = k FEG_t$$ Equation 9. Labor market tightness coefficient. (9) If $$\begin{cases} (P/E)/(PNat'1/ENat'1) & < 1 & \text{then } e = 0 \\ & \ge 1, < 1.05 & \text{then } e = 0.005 \\ & \ge 1.05 & \text{then } e = 0.01 \end{cases}$$ Equation 10. New residential facility employment. (10) NFRE_t = RFE_t - 0.3U - $$eP_t$$ Equation 11. New population. Equation 12. Total population with the energy facility: (12) $$WP_t = P_t + NP_t$$ (12a) In the case of school districts, then $$NS_t = SNP_t$$ Step 2. Forecast new residential property tax revenues (RPT+): Equation 13. Property tax revenues. Equation 13a. Property tax revenues, first year: (13a) $$\underline{t} = 11$$: RPT₁₁ = NP₁₁ (1-m-q) BLR₁₁ / P₁₁ Equation 13b. Define proportion of new residents paying property tax coefficient (h): - Equation 13c.1. If property tax receipts in next fiscal year, use Equation 13a for RPT₁₂ (derive from data), and subsequently, for t=13,...,30 use Equation 13d for RPT_t (t=13,...,30). - Equation 13c.2. If property tax receipts in same fiscal year, use for t=12,...,30. $$RPT_t = NP_t(1-m-q)BLR_t /P_t + NP_{t-1} \cdot h \cdot BLR_t /P_t$$ Equation 13d. If property tax receipts following fiscal year, in third year and later, use following equation (t=13,...,30). See note at Equation 13c.1. (13d) $$RPT_t = NP_t(1-m-q)BLR_t/P_t + (NP_{t-2}) h (BLR_t/P_t)$$ Step 3. Forecast (calculate) energy facility business property taxes. Equation 14a. Business property taxes if tax revenues received in SAME fiscal year (data), t=11,...,30. (14a) For t = 11, $$BPT_{11} = 0.5L_t$$ (g) $(T_{1,11})$ for t = 12, ..., 30 $$BPT_{t} = \left[\left(\sum_{i=11}^{t-1} L_{i} \right) + 0.5L_{t} \right] (g) (T_{1, t})$$ Equation 14b. Business property taxes if tax revenues received in following fiscal year (data), t=11,...,30. (14b) For $$t = 11$$ BPT₁₁ = 0 for t = 12 BPT₁₂ = $0.5L_{11}(g)(T_{1, 12})$ for t = 13, ..., 30 $$BPT_{t} = \left[\left(\sum_{i=11}^{t-2} L_{i} \right) + 0.5L_{t-1} \right] (g) (T_{1, t})$$ Step 4. Other business taxes. Equation 15. Real estate transfer taxes (if applicable). (15) RET_t = $$L_t \cdot T_2$$, t Equation 16. Sales and other such taxes. (16) $$ST_t = \sum_{n=3}^{J} T_n, t \cdot BT_{nt}$$ where n is the type of tax, and J is total number of such taxes + 2. Equation 17. All non-property taxes. (17) $$OBT_{t} = RET_{t} + ST_{t} + UT_{t} + OT_{t}$$ (Note: UT is user charges, and OT other taxes. This data given in schedules.) Step 5. Calculate expected tax revenues and expenditures with the impact of the energy facility. Equation 18. Expected expenditures with the energy facility. (18) $$WX_t = BLX_t + c_3^{NP}t$$ Equation 19. Forecast expected revenues with energy facility. (19) $$WR_t = BLR_t + RPT_t + BPT_t + OBT_t$$ Equation 20. Net fiscal impact. (20) $$NFI_t = WR_t - WX_t$$ The transfer of the second second #### IV. COMMENTS The general description of forecasting procedures is contained in the Technical Assistance Materials along with the data schedules. The comments presented here are supplementary to clarify certain technical aspects of the model. #### BASELINE FORECASTS Data limitations prevent making independent estimates of baseline revenues and baseline expenditures. Hence the baseline revenues are estimated as a function of revenues the previous period, changes in population and changes in per capita income. Revenues from borrowing or project related grants are excluded. Baseline expenditures, excluding expenditures of borrowed funds or project related grants, are then assumed to equal baseline revenues. This assumption is warranted in that after "lumpy" expenditures and revenues are eliminated, revenues generally come very close to equaling expenditures for local government units. The CEIP Impact Model uses only a simple continuation of trends in forecasting per capita income and population. If alternative estimates are available they should be utilized. #### IMPACT FORECASTS The impact forecasts are a series of calculations which are added to the baseline revenue forecasts. Assumptions and calculations underlying four of the more important steps in the impact forecast are explained below. - 1) Gravity Model The gravity model is based on previous empirical work. The assumptions are that the residential location of facility employees varies directly with the existing population in an area and inversely with the distance from the facility to the local area. The decline in relation to distance is direct up to 20 miles and three times the additional distance beyond 20 miles. This formulation may overstate the number of employees close to the facility and understate the number of employees distant from the facility during its initial years. This is because new employees will commute longer distances until they feel their jobs are permanent, after which they move closer to the facility. - 2) After the number of "new" jobs within the local government area are estimated with the gravity model and multiplier, an attempt is made to determine how many holders of new jobs will be new residents. The adjustment for labor market tightness (Equation 9) assumes no new entrants to the labor force if the population-employment ratio in the local area is lower than the national average. If the local population-employment ratio is up to 5 percent higher than the national average, .5 percent of the existing residential population are assumed to be new entrants to the labor force filling energy facility related jobs. If the local population-employment ratio is more than 5 percent higher than the national average, one percent of the existing residential population is assumed to join the labor force in energy facility related jobs. A second adjustment is made by assuming that 30 percent of the currently unemployed in the community find jobs. These calculations reduce the need for new residents in the community to fill energy facility jobs, and hence reduce the new population impact from the facility. 3) Property Tax Lags - It is assumed that no new residential property tax revenues accrue during the first year of energy facility activity. Beginning in the second year new residents pay the same amount of residential property tax as old residents if a) property taxes are collected in the same year as they are assessed and b) the rate of new population growth was less than 10 percent. If there is a one year lag between assessments and collections, new residential property taxes do not accrue until year three. If population increases are
large, the amount of residential property tax paid by new population is decreased by the factors indicated in Equation 13b, i.e., if growth is between 10 and 20 percent, new residents only pay 80 percent as much property tax as old residents. Business property tax receipts from the energy facility are also lagged if there is an assessment-collection lag. In addition, during the first year of a new business property tax assessment, only 50 percent is estimated to accrue. This is an "expected value" in that if the facility is in place early in the year, the amount would be 100 percent but if in place only at the end of the year, the amount could be 0. This 50 percent assumption can be modified to be either 0 or 100 percent by substituting 0 or 1 for .5 in Equations 14a and 14b. 4) Tax Rates for Estimating Energy Facility Revenues - In Schedule 4.2 local officials are asked to indicate current tax rates and tax rates 5, 10 and 15 years in the future for major taxes. Revenues from the energy facility will be sensitive to future tax rate estimates so it may be desirable to run the model more than once with a different estimate for rates for taxes in the future. CEIP IMPACT FORECAST REVIEW MATERIALS Prepared by Dr. Robert L. Bish and Candis L. Brown Prepared for the Office of Coastal Zone Management, NOAA Contract No. 7-35174 June 1977 #### CONTENTS | | | Pages | |------|--|-------| | I. | Introduction | 1 | | II. | Alternative Data Sources | 1 | | | Recommended for CEIP-OCZM Special Library Collection | 1 | | | General Sources | 2 | | III. | Review Questions for Schedules | 2 | | IV. | Review Questions for Forecasts | 3 | NOTE: The Review Questions have been prepared prior to development of the computer program or actual use of the model for forecasting. Consequently, the list of review questions is relatively short. The list will need to be supplemented after some experience with the operation of the model is obtained. #### I. INTRODUCTION Three kinds of reviews of CEIP Impact Models and forecasts can be made. First, data provided in schedules can be verified by checking alternative data sources as listed below. Second, some checks for internal consistency can be made; and third, forecasts can be examined to see if they are reasonable. Each of these review processes will be presented in turn. OCZM staff, however, should follow their own inclinations and also maintain a log of important questions or techniques for checking so that a more detailed, systematic review process can be developed after some experience with the program. #### II. ALTERNATIVE DATA SOURCES # Recommended for CEIP-OCZM Special Library Collection - Advisory Commission on Intergovernmental Relations (ACIR). SIGNIFICANT FEATURES OF FISCAL FEDERALISM 1976-1977, Vol. II. - 2. STATE AND COUNTY EMPLOYMENT AND UNEMPLOYMENT JANUARY-DECEMBER 1976. NTIS (Dept. of Commerce). Microfiche #3.00, paper-back \$28.75. - 3. Bureau of the Census. "Population Estimates and Projections/ Estimates of the Population of Counties;" 1970, 71, 72, 73, 74, 75. - 4. Bureau of the Census. "County Business Patterns." - 5. Bureau of Economic Analysis. "Local Area Personal Income." - 6. Bureau of the Census. "Finances of County Governments." (GF series, Vol. 4, No. 3). - 7. Bureau of the Census. "Finances of Municipality and Township Governments." (GF series, Vol. 4, No. 4). - 8. Bureau of the Census. "Compendium of Government Finances." - 9. Commerce Clearing House. STATE TAX REPORTER, Vol. I, II. #### General Sources - 1. Official state agencies who participate in federal-state cooperative program for local population estimates. - 2. Directory of bureau members of the Association for University Business and Economic Research (see Appendix B, THE CEIP IMPACT MODEL: TECHNICAL ASSISTANCE MATERIALS). - 3. Directory of local and state agency members of the Government Research Association, Inc. (see Appendix C, THE CEIP IMPACT MODEL: TECHNICAL ASSISTANCE MATERIALS). - 4. RAND MCNALLY COMMERCIAL ATLAS. - 5. Bureau of the Census. "State Reports on State and Local Government Finances." (GF series, Vol. 6, No. 2). - 6. Bureau of the Census. "Government and Census Depository Libraries Holding Census Bureau Reports." #### III. REVIEW QUESTIONS FOR SCHEDULES #### Energy Facility (Schedules 1 and 2) - 1. Check to see that the totals in column 4 of Schedule 1.2 are equal or slightly less than the cost of inputs, i.e. number of employees from 1.1 x an estimated wage (\$16,000 to \$20,000), plus the cost of land (1.2) and construction materials (1.3). - Be sure that 1.3 has been completed if the answer to 4.6b is yes. If 4.6b is no, Schedule 1.3 may be uncompleted. - 3. Be sure that 2.2 is completed if the answer to 4.6a is yes. If 4.6a is no, Schedule 2.2 need not be completed. #### Local Area Description - 1. Check to see that the local government's population for the year given in 3.1 corresponds to the population data in 3.4. - 2. Check to see that the sum of the number of residents employed and number of residents unemployed from 3.3 is one-third to one-half of the total population for the year of the data. - 3. If population or school enrollments forecasts are provided (3.6 or 3.8), examine them for comparability to data for past 10 years (3.4 or 3.7). #### Government Revenue and Expenditure 1. Compare data on revenue (4.1) with expenditure data (5.1). The way revenues and expenditures are defined, they should be very close to one another each year. 2. If expected tax rates in 4.2 are not increasing, check to see that either 1) revenues are not increasing very much; or 2) population is increasing rapidly. # IV. REVIEW QUESTIONS FOR FORECASTS - 1. Calculate the per capita revenues for the current year by dividing total revenue (4.1) by population (3.4). Compare this with the value of coefficient \hat{c}_3 as estimated in Equation 3. \hat{c}_3 should be less than the average per capita revenues; if it is greater, the forecast is extremely suspect. (\hat{c}_3 is the marginal revenue or expenditure from an additional person historically, taking into account income and the previous year's revenues or expenditures.) - 2. Examine the population and income data in Schedule 3.4 for any trends that would not be picked up in a linear equation. Compare the predicted population and income growth with historical experience. - Compare the taxes used with the changes in impact revenues. a) Property taxes will build slowly and level off upon completion of facility and stabilization of population. b) Sales taxes on construction materials will cause an early, sharp revenue rise followed by a decrease. c) Sales taxes on operating inputs will parallel increases in production and then level off. - 4. See if there is a boom effect on expenditures. If there is a sharp population increase followed by a population decrease, the expenditure forecast after the population decline may be a little low. This is because unless population has decreased in the past, the estimating coefficient for the effect of population on expenditures (ĉ₃) will be based on increases rather than decreases and decreases are likely to be less than increases. ISSUES IN ENERGY FACILITY IMPACT FORECASTING Prepared by Dr. Robert L. Bish and Candis L. Brown Prepared for the Office of Coastal Zone Management, NOAA Contract No. 7-35174 June 1977 # CONTENTS | | | Page | |------|---|------| | ı. | Introduction | 1 | | II. | The Resident-Commuter Split | 2 | | III. | Employment Multiplier | 5 | | | Geographic Size of the Area | 5 | | | Size of the Facility Work Force | 5 | | | Diversity in the Local Economic Activity | 6 | | | Current Growth | 6 | | | Forward and Backward Linkages to Industry | 6 | | | Payroll Leakage | 7 | | | Underemployment | 7 | | | Excess Business Capacity | 8 | | | Unfilled Vacated Jobs | 8 | | | Increased Participation in the Labor Force | 9 | | | Unemployment | 9 | | | Relation to Cross-Sectional Data Based Models | 10 | | IV. | Fiscal Impacts | 11 | | | Table I | 14 | | v. | Abstracted Bibliographies | 16 | | | Copies of Studies of Economic Impact Issues | | #### I. INTRODUCTION This manual provides information to increase understanding of energy facility economic impacts. It is based on studies of rural industrialization throughout the U. S. and energy-impacted communities in the Rocky Mountain and Northern Great Plains states. Some concepts and assumptions implicit in the forecasting procedures and specific findings of empirical data are also explained. This is necessary because many of the issues are not well known or understood. Questioning of procedures or use of data may be expected from local government officials, due mostly to not understanding or misunderstanding the factors involved. In addition, there are potentially important factors which are not used in forecasting procedures due to limitations of available data or methodological difficulties. These factors may change certain expected forecasts and are noted in their discussion. cation with the applying local governments, these factors can be discussed to provide information for adjustment of the forecasts for that community. The narrative is divided into three sections, treating issues of (1) the community/resident split and population impact on small local areas, (2) employment multipliers, and (3) fiscal impacts. The first two sections are directly related to the most important issues in the forecasting model. The third section is also relevant, but includes description of less related fiscal impact experience to illustrate misconceptions that may exist among local officials regarding fiscal benefits from industrialization. Other parts of the manual include an annotated bibliography, and copies of important studies of economic impact issues. #### II. THE RESIDENT-COMMUTER SPLIT The commuting radius of employees to an energy facility is likely to exceed
the boundaries of small local governments. Thus, an allocation of increased employment must be made among local areas. While this problem is critical for forecasting impact on local governments and is not a problem for large area forecasting models, this issue has not received significant attention as a forecasting problem. Thus, the technique utilized, while the best available, must be viewed with caution until more evidence on this problem is obtained. The allocation of employment to geographic areas around a facility is based on the gravity concept. This concept holds that the interaction between two points or places is a function of population and distance. It is directly proportional to its population and inversely proportional to the distance between the two places. For our purposes the interaction is commuting to work. The object of the formula is to forecast the distribution of direct employment to the local governments surrounding the The gravity concept applied to commuting means that facility site. the facility attracts employees from surrounding areas in direct proportion to the population of a particular local government. The larger the population, the greater the number of employees who will live there. And, the facility attracts commuters from surrounding areas inversely related to the distance between the facility and the area. The farther the local government from the facility site, the fewer the number of employees who will live there. The distribution forecasting formula used in the CEIP Impact Model is the result of several case studies' findings and the analyses of twelve different specifications (5, p. 125). These studies looked at commuting in nonmetropolitan areas. Conditions were similar to the expected conditions of energy impacted in coastal areas. Distance could be used as a substitute for travel time. The evidence from these studies suggests that in rural areas there is a propensity to remain in established residences and a willingness to commute long distances to work. Rural and small town residents commute long distances with the opportunity to work in an industrial plant. Commuting patterns in one small nonmetropolitan area were studied with data collected from a total of 1,645 employees from two firms. The two patterns were compared and their characteristics analyzed. There was a major difference between the two employee groups' commuting patterns. The average one-way commuting distance of the fiber plant employment was 17.5 miles. compares with the shirt factory's much smaller average one-way distance of 6.7 miles. The median distances were 13 miles for the fiber plant and 4 miles for the shirt factory employees. Approximately 54 percent of fiber plant workers lived within 15 miles of the plant. Of the shirt factory workers, 80 percent lived within 15 miles of the factory. The state average for workers living within 15 miles of their work place is $7\overline{7}$ Thus, the fiber plant work force is drawn from dispercent. tances farther than are most workers in the state; the shirt factory draws most of its work force in a smaller radius than both the fiber plant and the state average. Slightly more than 15 percent of the fiber workers travel 35 miles or more to work, while less than 1 percent of the shirt factory employees commute that far. In fact, 7 percent of the fiber plant workers commuted over 60 miles to the factory. The comparison of the two plants' commuting patterns shows that there is a significant difference in the distances traveled to work for the two groups. The labor-shed, arbitrarily defined in this case to include the closest 90 percent of the two factories' labor force, is nearly twice as extensive for the fiber plant as for the shirt factory: 38 miles and 20 miles. Wage differences are the primary factor explaining the significant difference between the two commuting patterns. wages paid by the fiber plant were substantially above those in the surrounding area and the state. The shirt factory wages were below both area and state wages. Previous studies have left researchers in dispute over the relationship of wages to distances However, the comparison of the lower and the higher commuted. wage groups within the same community suggested that wages have a significant impact on commuting. But it was evident that only when wages were compared with those in the immediate area did they affect the willingness to commute long distances. other studies were conducted in similar economically depressed, small nonmetropolitan areas. A comparison of the existing area opportunities and median one-way distances commuted in these studies with those of the fiber and shirt factory shows that wages do have a significant influence on the willingness to commute longer distances, particularly in the "lower wage" environments. In this respect energy facilities will have "high wages" and, thus, draw on a very large labor market area. Thus, commuting distances forecast in the model for an energy facility may be longer than existing employment commuting, but this result is warranted by previous studies. A second important study finding is the tendency, over time, to move closer to the place of employment. Nearly ½ of the fiber plant workers and 1/6 of the shirt factory workers had moved closer to their place of employment since they began work there. And other employees who had not relocated indicated future intentions to do so. The median distance commuted since the opening of the fiber plant dropped from 28.8 miles to 13 miles. The shirt factory shift was less, mostly because it was located inside the town (the fiber plant was 7 miles outside the town). The existing road networks were also found to influence the commuting pattern. Each of the 1,645 employees of the fiber and shirt factories plotted their residences on a map provided. The effect of road networks is evident from the residential locations. They extend farthest out along main or radial roads. In addition to case study findings, the results of 12 different exponents of distance were tested to obtain the best prediction. Both time and mileage were used as measures of distance, but one was found to be as good a measure of distance as the other. Mileage, however, serves forecasting purposes better because it is more easily determined. While the models fit very well, each understated or overstated the actual numbers contained in the various zones by some amount. In an attempt to account for the deviations between the model and actual distribution, several other factors were tested. Per capita income, population density, and intensity of agricultural employment of the local area were found to have an effect on the commuting patterns of the fiber workers. These three variables explained a major portion of the deviation from the expected distribution. Those districts generating more commuters than expected were low (population) density areas, had lower per capita incomes, and a high percentage of the labor force was employed in the agricultural sector. These three factors, which are not accounted for in the forecasting formula, may indicate an adjustment from the forecasted distribution. To summarize, the forecasting model should give good results if the energy facility has higher than area-average wages and travel time and distance are approximately equal in different commuting directions. The over forecasts, however, should be discussed with local officials to discover any conditions unique to a particular community. #### III. EMPLOYMENT MULTIPLIER Industrial development in rural areas if often expected to result in many new jobs and to stimulate the local economy. However, the evidence indicates that the secondary employment affects from development are relatively small. The range of reported multipliers for small areas is 1.00 to 1.71, the majority of which are less than 1.2. These figures are lower than those generated by regional impact models. These multipliers range above 2.0. State or regional models and models based on cross-sectional data consistently predict much more secondary employment than is evidenced from case studies of small areas impacted by industrial development. The following sections discuss the principles that significantly effect the mutliplier. Several factors with a less significant effect are also discussed to give a more complete description of the multiplier effect. # GEOGRAPHIC SIZE OF THE AREA Since secondary jobs tend to locate around already existing business activity, smaller areas with fewer existing jobs will have fewer additional jobs and a smaller multiplier effect. Very small areas have small multipliers. However, smallness is not important after a county-sized area is included. The effect of geographic size, beyond that of a single county, on the size of multipliers was the subject of two case studies. Expecting to find size an important factor, one study extended its consideration of one-county area to a four-county area, and the other study extended its boundaries to an eight-county area. They assumed that extension of the geographic boundaries would increase the degree to which secondary employment effects would be internalized. But the impact was not significantly larger due to the size change at the county-area scale. ### SIZE OF THE FACILITY WORK FORCE The size of the facility work force is a factor associated with the indirect and induced employment growth. The size, however, is not directly related to the size of the multiplier. For example, Box Elder County, Utah, with its rocket fuel and missile fuel development, had a total direct employment of 5,688. This is large when compared with other industrial plants. This figure is also high for most energy facilities in the beginning of operation. The multiplier was low -- 1.34. In contrast, Braxton County, West Virginia had 77 employed in the particle board plant, and a multiplier of 1.50. The following sections discuss industry
and local economic conditions, which have a more significant impact on the size of the multiplier than do the size of the industry work force and the geographic size of the area. Diversity of local economic activity, forward and backward linkages of the industry, payroll leakage, underemployment, excess business capacity, and the number of unfilled vacant jobs, all have significant impact on the size of the multiplier. #### DIVERSITY IN THE LOCAL ECONOMIC ACTIVITY Diversity in local business activity has a significant impact on the number of new jobs generated by the facility. There are several ways in which diversity is important. First, there is an affect of the size of the existing commercial and business sectors on the amount of trade carried on within the local market. Communities with only a few or no commercial and industrial establishments are more dependent on imports, and do not seem to gain many indirect or induced jobs through increased business activity generated by new industry. This is a major reason why small areas have smaller multipliers. They do not have the existing commercial and business capacity to promote higher growth of secondary employment. The second aspect of diversity important to the number of indirect jobs generated by new industry is the size of the community's existing manufacturing sector. There is empirical evidence that industrialized areas with manufacturing activity have higher multipliers. #### CURRENT GROWTH When areas contain both a large manufacturing sector and a high growth rate, multipliers tend to be high. Studies of impacts in county areas with these characteristics indicate multipliers of 1.65 and 1.68 -- close to the top range of multipliers identified in several hundred studies. # FORWARD AND BACKWARD LINKAGES TO INDUSTRY Nonmetropolitan communities are also limited to small multipliers by linkage to external markets. Backward linkages are the suppliers of inputs to production. Forward linkages are the connections with external markets for the manufactured product. Industries which depend upon local business to supply the raw materials and services for production, and whose product is consumed on the local market, produce more of an employment impact in those businesses than if the industry were linked to external markets. From the increased economic activity employment is induced in those sectors which do not directly service the industry, in addition to those which do. An example of a small area with a high multiplier is Braxton County, West Virginia. Braxton was able to supply nearly all timber and coal to the particle board plant located there. As a result of the internally supplied raw materials, Braxton had a high multiplier of 1.50. Box Elder County, Utah, in the other extreme, was little more than a labor supply for the rocket fuel and missile fuel industries. Nearly all the raw materials were "imported" into Box Elder, and the product was distributed to external markets. The secondary employment growth was moderately small -- 1.34. The researchers who studied Box Elder attributed the small multiplier effect to the lack of interaction between industry and local businesses. Energy facilities are characteristic of the latter kind of linkage. As with the rocket and missile fuel industry in Box Elder, secondary employment growth in the local business and service sectors is expected to be small because raw materials are imported and products exported. #### PAYROLL LEAKAGE Payroll leakage refers to the facility wages and salaries paid to nonresidents. These employees commute to work and tend to spend their income in their place of residence. For some areas this does not present a serious problem, since the direct employed are community residents and the number of commuters are small. In these cases there is little of the facility income "leaked" out of the local area. But there are communities where a substantial number of the facility employees are not local community residents. Studies of these cases have found substantial leakage evidenced by low multipliers. One study reported 30.8% of the nonresident employees spent about 40% of the factory income outside of the community. In this instance, the purchasing power added through industrial employment leaked out and did not contribute to the creation of new jobs. The lack of respending had a restricting affect on the number of jobs generated by the new factory. In the case of an energy facility, the multiplier is expected to be lower during the construction phase, due to the higher number of commuting construction workers. Commuting is also expected to be significant in the case of the energy facility operation phase due to the lack of available labor in the community with the skills required for the job. This labor must be "imported" to the facility location. The problem presented by the lack of local labor with the necessary skills is an important component of the total number of unemployed who will be hired for indirect employment, and will be discussed further in the section explaining the unemployment issue. #### UNDEREMPLOYMENT The amount of existing underemployment is an important factor of growth in indirect employment. To the extent that local businesses can handle increased business without hiring additional employees or increasing the capital stock, there will be no significant increase in secondary employment. This is easy enough to understand. The problem lies in the measurement of underemployment. Underemployed include those working less than full-time hours and those employed in jobs for which they are over qualified based on previous experience, skill, and education. There is no systematic method for detecting the amount of underemployment. What little is known about the extent of underemployment was collected through surveys conducted in studies of particular local areas. No methods of identifying or measuring the underemployment have resulted from the studies. The best estimates of the extent of underemployment in a community are obtained from local businessmen or business associations. Some communities will have a better idea of the existing conditions than others. But an estimate for this factor is important, since this has a significant effect on the number of jobs which will be generated by the new facility. #### EXCESS BUSINESS CAPACITY In addition to the problem of detecting and quantifying the existing underemployment, there is an additional effect on secondary employment growth of excess business capacity. Excess capacity will absorb economic business activity and decrease the number of jobs generated by direct employment. This effect was noted in one case study of new industry in five small communities. multipliers ranged from 1.00 to 1.18, and the excess capacity in capital stock of the supporting goods and services was cited. There was particular excess capacity in the construction industry, where there was little induced and indirect employment growth. Historical data for the community are helpful in determining the communities likely to have excess capacity in business and commercial sectors. These are communities which have experienced economic and population declines in the past 10 years or so. The variability of this factor is why direct impact estimates by local businessmen are used in the CEIP Forecasting Model. #### UNFILLED VACATED JOBS Another factor which contributes to the low multipliers found in small communities is that jobs vacated by employees taking jobs with the new facility often are left unfilled. Empirical data show a substantial amount of unfilled vacancies, particularly when the vacant jobs are paid a lower wage or salary than jobs with the new direct and induced activities. In a study of employment patterns, employers were interviewed and asked the previous employment status of their employees. The study reported most employers answered that there was considerable hiring of workers from other industries. Figures as high as 19.3 percent of the vacated jobs are reported unfilled. This is one factor that few models take into account in their calculations of the multiplier effect of new industry. It is important to recognize that not replacing employees who go to work for the energy facility can have a substantial role in reducing the size of the multiplier. This factor is probably not recognized by local officials as a contributor to a lower secondary employment effect. But this information, like the underemployment and excess capacity data, is not systematically collected. It is another reason, however, for the use of small multipliers in the CEIP Model. #### INCREASED PARTICIPATION IN THE LABOR FORCE Increased participation in the labor force is even more difficult to adjust for than is unemployment. Very few studies have measured the potential labor force in an area, nor have specific variables associated with increased participation been identified. The result is that there is no specific data available to determine for a given area who will enter the labor force and under what conditions. However, the studies do suggest explanations for the increased participation in those areas experiencing increases. The most evident explanation is the opening of job opportunities on the local market. Empirical results point to increased participation as new opportunities are made available. Participation rates seem to be more a function of the demand for workers and wages than of the number of existing and potential labor force. While this observation is helpful in developing a theoretical understanding of labor force participation, it does not provide a method for determining the number of those expected to enter the labor force. The national employment/population ratio has been a basis to compare the amount of labor force participation on the local level. The rational here is that the national ratio is an average or expected participation rate, and divergence
from this rate indicates the amount of additional participation which can be expected with an increase of employment opportuni-The studies of labor force participation report marked increase in participation in the communities, with pre-industry rates much lower than the national ratio. The lower the labor force ratio compared with the national average, the greater the probability potential members will become active. One study of industry employees found the proportion of new industry employees not previously in the labor force was substantial -- 25%-34%. The increase of local participation in the labor force is most likely in areas of economic and population decline. This is an indication that there is potential, although local business and civic leaders who know their community are the best sources for the estimates. As with the other factors of economic and employment growth, which is not well documented, the national-local labor force participation adjustment is not perfect but it is feasible to use with the information available. #### UNEMPLOYMENT Predicting the distribution of the secondary jobs between local and new residents includes an assumption that 30% of the unemployed are hired in direct or secondary jobs. Previously, it was assumed that new industry locating in a declining area would hire many of the unemployed; substantially raising economic conditions in the local area. But the results of studies of rural industrialization have not supported this belief. New industry does not significantly reduce the number of unemployed. And in some instances, unemployment increases. One of the main reasons for this is the hiring practices of employers. Other applicants are preferred to the unemployed, who are viewed as a risk. grants, commuters, returnees to the area, and those already employed who quit to take a job with the new industry, are hired before the unemployed are. The higher educational levels and skills attained of the incoming and already employed people are the reasons cited for the preference. In most cases studied, the unemployment rate decreased, but only by about 2 percentage points. The number of direct jobs filled by previously unemployed persons was small. The range was 1.0 percent to 43 percent, and only in three instances was the proportion above 14 percent. The only studies which concluded the unemployment rates fell substantially (more than 2 percent) were those of EDA programs, which provided manpower training, direct financial support, and employment-related requirements by industry for program funding. A second reason for such a small decrease in the unemployment rate when new industry locates in a community is the mismatch of skills between industry demand and readily available labor in the area. Case studies have reported that the higher wage, higher skill industries draw more of their employees from immigrants and commuters and less from the unemployed, than do the lower wage, lower skill industries. Since both the construction and operation of the energy facility require particular skills, the conditions for mismatch are expected in hosting communities. Based on the evidence supporting these expectations, .3 of the unemployed indirect labor force, are expected to join the direct and indirect labor force. If local officials believe the unemployed in their community are comprised of higher skilled and educated people required for direct and induced employment, additional adjustment may be advisable. # RELATION TO CROSS-SECTIONAL DATA BASED MODELS The CEIP Model uses the small multipliers actually identified in case studies of economic impacts on small communities. Two major sources of the difference with higher multipliers estimated from cross-sectional data are 1) the lack of employers refilling jobs vacated by employees who are hired by the energy facility; and 2) the smallness of the areas impacted. We believe that to use multipliers based on cross-sectional data or multipliers based on large areas will grossly overestimate impacts of energy facilities on local communities. This is likely to be a major point of difference between the CEIP and alternative models. From all evidence from actual impact studies, the CEIP Model assumptions are supported by the evidence which exists at the current time. #### IV. FISCAL IMPACTS Nearly all growth in public revenues depends on growth in the private sector. Studies of fiscal impacts on local governments show that whatever the gains made in the public sector, they were small in comparison with those achieved in the private sector. Furthermore, if the benefits of industrialization were better channeled, they could have made a more significant impact on local government fiscal well-being. Most studies of rural industrialization find the costs to local governments higher than necessary. This is because financial inducements to industrial locations are not fully recovered. These inducements may be one-time costs or they may be in the form of services provided to industry at less than cost. Locational costs include advertising expenses, tax holidays, low interest financing, land acquisition, and site preparation. If the local government purchases the land, there is the loss of previous revenue since government property is not taxed. Tax holidays, which relieve industry of paying any or all taxes lasting as long as 20 years, have been cited by industrialization studies. And it is common practice to tax industry at a lower rate, inducing industry to locate in the area. Site preparation includes extension and improvements of access roads, utility connections, land-scape modification, and construction of buildings. Service provision has been another high cost to local governments. In providing public services like police and fire protection, water and sewerage, electrical and/or gas, and access road maintenance, payments do not always equal the costs of providing In some cases, the local government has funded and built utility or sewerage treatment facilities for the industry. mental damage has also required public expenditures. Case studies have found that runoff from development has caused serious problems with water systems. Capital expenditures for new or expanded storm sewerage systems were necessary. All of these subsidies are actually costs to the community. In the past it was believed that these costs would be recovered indirectly through the increased business and personal incomes generated by the additional economic activity but empirical evidence disputes this. In some instances the costs are recovered over time, but more often they are not. Industry's indirect effect on the public sector is through population growth and change. The first effect is the increase in personal income in the local area. Increases in personal income make their way into the public financial sector through two avenues. Property tax revenue is increased. The extra earnings are put into upgrading the standard of living either through home (property) improvement or through a new home purchase. Secondly, there is an increase in retail sales tax revenue or business taxes for local governments using these tax sources. Increased income generates more retail sales or business, which is accompanied by an increase in tax revenue from those sales. But empirical evidence shows that increases in public revenues resulting from increased income is often not as significant as the income growth itself. While public revenues increase less than private incomes, studies consistently report increases in local tax revenue. major increases are in retail sales tax revenues, intergovernmental transfer payments, and property tax revenues. For example, the property tax has been observed in many studies as being especially unresponsive to economic growth in the private sector. This presents a serious problem in many local governments. lack the operating and the "front-end" capital for expansion of facilities which are warranted by residential growth. There are two reasons evident for the lack of growth of local property tax revenues, particularly residential property tax revenues. One is the conditions determining construction and development of residential property. The other is the "lag" associated with property tax assessment and collection. Residential property tax growth is dependent upon several factors in the housing market. The distance to other housing markets influences residential construction and development. Neighboring communities "compete" to provide housing for employees new to the area. Potential residents are lost to nearby housing markets. A second factor is the availability of existing housing. Those who can find vacant housing will have no need to construct homes. Thus, the amount of vacant housing and nearby housing markets consequently minimize growth of property tax revenues. Another factor which affects residential property revenues is the amount of commuting to work. The more people who commute into the area, specifically for direct (facility) employment, the fewer the number of new residents. Although there is a tendency to move closer to the place of employment over time, the increases in property tax revenues from residential development are potential, at best. As studies of energy-impacted communities in the western states have noted, assessed valuation in residential properties rose very little in response to the economic development. There was little increase of those revenues in inflated dollars and none at all in terms of real dollars. There are two "lags" associated with property tax assessment and collection. Local governments may be affected by one of these or both. The effect is called a lag because of the time that elapses between the value increase of the property and tax receipts accruing to the government. The first lag occurs with property assessments. Property is assessed periodically at a specified time period. If residential building
construction or other property development is completed after the assessment date, property will not be assessed until the next year. The second lag occurs between the assessment and collection of the tax. Often the tax "bill" is not collected during the same fiscal year the assessment is made. Over the years some states have changed fiscal years, while assessment and collection dates remain the same. These lags do not actually diminish revenues. Rather they limit the available revenues during the first years of construction and operation of a new facility, precisely when new government expenditures may be needed to service the facility and its expected population. In Table 1, a summary of revenue sources and their implications for revenue growth in response to energy development is presented. While The Tax Lead Time Study (6, Sec. 3) was prepared for the state of Colorado and is specific to certain rates and taxable goods and services, it still offers basic information on the responsiveness to private sector growth of various taxes. In many case studies it has been discovered that additional revenues are often not sufficient to cover increased demands for basic services. First, with the increased incomes generated by industrial development, historical empirical data show an increase in the quantity and quality of demand for public services. Second, an increase is evident due to population growth, often requiring capital outlay. This has been especially true of utilities such as water and sewerage treatment and schools. Existing capacities are overloaded by new population, so new or extended facilities are necessary. Usually the increase in user charge revenues for utilities and property taxes and state aid for schools does not cover the capital costs. This puts a burden on the finances of the government, particularly on capital expansion which is necessary to provide services to temporary residents. As is the case with most energy development, there is an employment and population decline after construction. This often leaves the permanent residents bearing the financial burden of the extended, and now underutilized, service capacity. Predicting the response of a local government to population growth is extremely difficult. In the CEIP Model the historical increase in expenditures added by each new person is estimated, and this estimate is then used to forecast the increase in expenditures associated with new population. This technique is better than simply multiplying average per capita expenditures by the expected population increase -- but it is still a very rough estimating procedure for large population changes. Increases in revenues are forecast in a similar manner. The historical increase in revenues associated with new population is estimated and used for forecasting, while taking into account property tax revenue lags. In addition, each taxable element of the energy facility itself is forecast and revenues calculated. In general, as much importance should be given to the forecast differences between revenues and expenditures in the CEIP Model as to their absolute levels. It must also be remembered that the revenue and expenditure forecasts depend upon previously estimated population changes, which in turn depend on multiplier and residential-commuter employee split estimates. At each step # Revenue Alternatives For Colorado Local Governments | | | | | | | | | 1 | | | | | |-------------------------------|--|--|---
--|--|--|--
---|---|--|---|---| | | GENERAL SALES
TAX | SELECTIVE
SALES TAX | USE TAX | AD VALOREM
PROPERTY IAX | GENERA!
OCCUPATION IAX | SPECIFIC
OCCUPATION TAX | USER FEES | SEVERANCE
TAX | IOCAL
INCOME TAX | REAL ESTATE
TRANSFER TAX | SITE VALUE
TAX | LAND VALUE
INCREMENT TAX | | DESCRIPTION | Exists the best leveled on recall
rains of taughthy personal
property founding serv-
reed made facilities to ter-
ing lunfuleties. | Reise tes levisé en retail : ains of écut en de centre d | desent the privilege of meering, distributing, un-
ang, or constant strikes and tasking properties of teaching properties or typ in the restrop laries of the properties th | A utlant an compared on the annual of all property, real and personal. Incared within the service in 1 limits of the authority levying the test. | Tax laposed for the pitter. Less of carrying on any all a board range of occupa- floor within the trains jur- safection. Newty's head can is an example. | in isolad for the privi-
ings of carries on certain
recognition within a maning
including the privile is a
superior formula; laws
and here and liquin occupa-
tion areas as comes in
advance. | Prices charged the consumers of an officers and officers and a serious public services of examination of the charge of recreation propriate charge for capital facilities as well as operating costs. | Tax on the production or settention of certain ainserted, only only only only only only only only | Tax on the income of trait-
and relational, setter,
and recut and income
of
mourer, that derived from
lead towards. All deep of
lead towards. All deep of
exply to the income of
compositions resulted in or
should include in the lead
and | its lavied on the conveyance
of real property. The tax
its melapose to a sales tist
on real property. | As valores eas on senseed
valuation of land but not
teproversale. | Tax imposes on the set pile
the water of a fine
price of land or land of
price on the beautiest
printed in the | | YIELO | 10 The second sec | MATERIAN CREATER STATES OF THE | Generally about 1/10 the pittle of a competation general and a competation and a competation and a competation and a control of the little and a competation general and a control of the little g | For non-industrialized, but unpublished action, 1 of 197 31 32 31 15 11 11 11 11 11 11 11 11 11 11 11 11 | The low next productive gar-
eral occupation teas as the
currently from an
eractive present and an
eractive teasure and an
press to sessent greats. | and the profits of the properties of the profits | Martin billil for (pr. (pr. (pr. (pr. (pr. (pr. (pr. (pr | increase oil and gas pro-
berton ara llows a refett
that certiful ad values
increase are no the
law rease are no the
law relation to the
law relation enough pre
(OO) Milkay gas creates,
scholing tax creates,
and the same contents of
the contents of the law
relating tax creates,
and the contents of the law
scholing tax creates, but
and the contents of the law law
perceed. | or fixed year 1972-15, close so collected in ac-
merco's 1970 per collected in ac-
erco's 1970 per collected in
merco's 1971 fixed
before would end tile
before would end tile
procedured; 1972 per coll
a mendal). Hoose to
a mendal, though the be-
districted are subject to
older as they from the
collection are subject to | Mand on catality formans on season to consider to a main practice to the confider to a mainly practice to the confider to the confider and practice to the confider and the confider and the confider and the confider to the confider and the confider to confideration conf | B-505 of that from datali-
that have no all real
and personal property. Same
the large noise as all
property for | Opposition are named of core and the core of core and the specially no 1 a citeting applications. | | LEGALITY | dagal los bose ruta cities,
comaties, estetuery cities
and covat. Electico er-
girir de la but bose pub-
cities (unitas charter er-
tiene camalative lavy fort
and cuttee ad comities is
any not location. | ings for home rule cities. So stations whose first for conting, structory cities from. Localities with district case do not receive eigensteas to district the cities from the state. | lagal tor home rule cities and statutory cities/severa- not statutory cities/severa- ty statiesm combattore levy for all cities and town is any one lo-actor. | begal for home rule cities,
counties, and stationy
catalycome subject to ex-
tensive Aberter, constitu-
tional and statutory ligh-
tations. | lagal for home rule cities
wathin charter limits.
Legal for survey cities!
romms. To authority for
counities, districts. | lagal for hose rule citter
think chart liste.
Lagal los stitutory citter
commis. So stibulty for
commics, districts | logal for all types of lacel
governments. | No existing authority for
this car. The General
Assembly could enable much
a tax at the stare, region-
al, or local level. | A local lacone test, lavied
by the Gentral Assembly at
the request of local poli-
tics haddliness, may be-
constitutional but materior-
leed by starter. | Consists, statement cities of from a special first of the south of the special first of the special first of the south of the special first of the south of the special first | No authorization for arms-
try political and visions.
No be leaf for how rule
for the bost not appar to
be prohibited by consilu-
tion. | See as lacons tax. | | ELASTICITY | Drit obastic (conge 0.8- | Strongly toclosite (range
0.0-0-0.0) | lhit elastic (rage 0, 1- | Maderately inclusion franke
0.4-1.3. Property test
base in Carffeld and No
base in Carffeld and No
dominated by out Male fe-
cilities, out by local
schools conditions. | Strongly instants as typi-
cally used. Can be netwo-
tured to be less larloselie. | Scrowlly tasketts at typi-
celly used. Con be attor-
tored to be less inclastic. | Strongly inelestic with
elegacis of infastion. Unit
elestic with respect to
population grouth and real
facons grouth. | Changes in revenue from
sercines cases as an
correlated with changes
is lacil acommic confi-
tions. | Strongly alantic (rings
1.3-2.1). | Generally alactic, yet sub-
ject to arron influence of
money market conditions. | Som as property tad. | Highly clastic but subject
to strong followers of
money market conditions. | | NCIDENCE | Regional to large. Fourth of Noweled All and Taxes concerning the state of stat | More regressive to incom-
thin general sales str.
Socral to bounded site.
Three more religions and
fillers. | Game on graveral solution for the president of corpt whiches me construction and building materials. | description shallow to control of | the control of co | lan as temeral occupation | Paid by the tendiciary Control of the Control Shift | Milain capalio face, the management of the service than and to contours or that he for face, and the than and the service of the passet on to contours, and opering from the re- | Chalsted House teast
(Sand) Coloredo) are
trongly profession with
trapper of prome or
ports income trans are
opported by asper has
equality in a side in
taken income propie. | Conditions in real rates and the condition in a cipit saliers and the condition in a cipit saliers and conditions the t | Ladoners of all types.
Less batten en occupants of
high dentity restillaces. | Lackboners to sreas exper-
tenting rapid increases to
land value. | | CONTROL | High degree of local con-
rect for how rule cities.
Seaturery cities and cone,
and committee mer we
rest contact mer we
rest of tree and state
collection system. | Ware legal, local emirol
is good. | Laral use cases are skaln-
fassed by local govern-
sent. Good control. | Staticny all levy limits overthe control no control noted control noted to control noted to the t | Excellent local control. | Excellent local centrol. | Excellent local control. ontolas a terrore noute to achieve by the fort that finitesed costs due to increased desiral attificated desiral | Very poor local control. The Control Assembly sets the rates and non-local factors deterrine the site of the jas base. | Mechanic of the constitu-
citical regularment that
only c's General Assembly
that I wait do be tooking
the I wait do be tooking
the I want to be tooking
tooking the tooking only to be tooking
tooking the tooking of the tooking too | Tax rate to subject to local androin, but the tax base is influenced by non-ical economic devalopments. | Station will lawy limits werely constrain local control in counties, state distriction of comments, state distriction of comments and control | Very poor local control
of true Orealished by
General Autobly) and
Ean bare (conditions). | | MARKET SIDE
EFFECTS | Sets bacerives for retail
backers locates just our-
tide of testig just delettion. | Sets incestive for result
besiess location par our-
ide of caring jurisdiction. | Redects incessives for
result between location
is counted of caring
parisaction, especially
with regard to enter and
construction materials. | Distinctive to new anther seriopseum. Could have seriopseum of the seriopseum of the shale resources. | Significant aide-effects
unlitely at levels coremity
used in Colorado. | Beary specific occupation
takes and alternates of
fected buildenses from
the arts are seen and
because and not tilvely
differ communities. | Set incomines for the ef-
fictor was pay for
only the second used. High
billist tees for positic
facilities are reflected to
Higher bounday costs. | Set incertives for the taxed excitety to because outside of taxing parisettism of the taxing parisettism of the taxing taxing the taxing | Significant methal aide-
effects was identified. | Contact formations to avoid
property said. In a tight
water, bounds prices will
the second extremely a
prices will be less affect-
in. Such effects correlate
to the tax are applied. | Greetes Incentives to put
Lind fate the highest and
best use allowed by late.
Proces full development of
wees. | headers consult to line
consultation to line
to read subtry them are
to account plant while
to account plant would
like the mention or pet
line the mention or pet
line the libert man | | CERTAINTY /
PREDICTABILITY | bolarately you predicta-
bility in hort Tun, Bor
predictability over 3 to
5 year term. | fredictability depends on specific object of martins. Good for motor fuels, teheste products, and alcohol. | Same as general rates | Good predictability of ce-
stdential portion of car
base. Industrial and min-
ing portions are more and-
ject to erratic charges aid
production is unstable. | Wary and predictability. | | At first rate levels, esud
predictability. Monever,
rate variations can be us-
pected to affect consump-
tion as well as concis. | decemblity. | Moderariy pood predicta-
bility in short tum.
Foorer predictability over
2 to 3 yest term. | For cettaint/predicts-
bility. | Very good predictability. | Depredictable. Nowe so
if real pains are kesse,
as opposed to accruet gains. | |
ADMINISTRATIVE
COST | Largest administrative cost
due to vendor feet. Total
administrative cost-blit
for bose rais cities. 4-
3% for comities and serv-
tory cities and torus. | Somewhat bigher than cent
lor general miss tar. | Migh. May approach 101
or more of Tevenue. | The cost of increasing or
decreating relators no
property tan is externly
small. | Depris on size of ins. Mr
higher levels; the oblinie-
tration cost approximates
peneral sales tax. | Mapsade on aire of tax. At Misky lavels, approx. Sation salective sales Est. | tage for tercine systems, and give rise on sobies of tage of the terminal costs due to take studies, positively, consumption, to individual hill-ling, and expreded accounting systems. | thery box. | Very low for state-col-
lected, houstly resumed
lacal income tea. | in jor cost to suforcement to the appretamentations. One profits the desired that the sufficient in the desired to sufficient to the desired to sufficient to the desired to sufficient to the s | f land to sessured for
perty ten, little ddd-
toni cost would teault
or eite walue taxatlen. | Administrative cont cannot
be estimated due to lade do
experience with this ten in
the U.S. and become of the
variety of forms of the ten. | | CITIŻEN
ACCEPTANCE | Opisions vary with axistic
lays, the consistently
topost probaty tast to
popularity surviys. Far-
tions of 11 mmy be prefer-
red at times. | Opinions vary vite asiating
level. High level of taxa-
tion on tobacco and sicobal
argested. Existing levels
ibrouphos; Colorade how
compared to other states. | Strongly devoted by local
methods median mejor
cost item located fulida
meles taxing jurisdiction. | Considered regressive and "sufairly saministered free" aquality comes in last in populating in research opin- lon polls. | hav entender opposition as
"new ran" Will have ep-
position from bainess com-
matty. | Chilary may led they use the being town or pers town of businesses any argue that they are the are they the are they are they are they | Generally (avorable, For
loc-in.me (illiens, boc-
ever, use of now polic
services any (all below a
nocially destrable level. | hay be favorable if citi-
zen fet entry connect
cho.ld that development
coss and/to became sav-
effice taxe are largely
exported. | less :avorable than federal
finces i.a. (Stiture rac
mew :act to oppose a
mew :ac." | Nay segander opposition as
"sev cas," especially from
realice. | hay entender opposition as
"new tax" and since large
trace are necessary to gen-
erate sitable revenue from | heiter screptones if mod-
erre gains accomplish
over long pricide were ser-
empt. Tex no real sather
than account pains would
be more acceptable. | | | dource: Eristos, Naphis, Nu- | or by ond Lament, Inc., 011 S. | ktistos, Naphis, Narray, and Limoni, Inc., Gil Shaik Tax Laad Thea Study, prepared for Esgiousi Development
and Land Day Manadring Dubocomatices of the Governor's Committee to Gil Shels Invitonmental Problems, Denver, | ared for Regional Development | | | | | | | | | bucca; itsus, inchia, merey, and identi, inc. off labble inc. identify, line Study, propried for lagican) investigated and identification of State favoironmental Froblem, increment a commerce of the constituence of the Control of State (and The Charles, Denvey, criterio, 1974, This chart is a commerce of Section 1 of that entain. the CEIP Model utilizes existing evidence, but it remains a relatively simple model of a very complex process. It should be treated as a useful guide and is probably as good as any existing alternative models, but weaknesses in the state of the art for forecasting industrial and fiscal impacts on local governments must be recognized. # V. ABSTRACTED BIBLIOGRAPHIES OF PRINCIPAL INFORMATION SOURCES Advisory Commission on Intergovernmental Relations. SIGNIFICANT FEATURES OF FISCAL FEDERALISM 1976-1977, Vol. II. Washington, D. C., March 1977. This report provides detailed information on the federal-state-local revenue and debt structures. The material includes major state and local tax rates and bases; major revenue producers of federal, state, and local finances; federal aid to state and local governments; state aid to local governments; and state and local government debt. This volume is intended to provide the data necessary for a comparison among states of alternative policies in the area of revenue and debt. Braschler, Curtis, and John Kuehn. "Estimation of Employment Multipliers for Planning in Ozark Nonmetropolitan Counties." SOUTHERN JOURNAL OF AGRICULTURAL ECONOMICS, July 1976, pp. 187-192. In determining employment multipliers for small areas, this study differs from previous approaches in two respects. The first difference is the grouping of counties by population. Statistical tests indicated estimation was improved by grouping based on population. This recognizes the importance of size in determining an area's secondary employment growth. Secondly, the regression analysis equation separated basic employment into sectors giving separate multipliers for each of the sectors. This recognizes the differences among basic sector impacts. Different industries produce different effects. The reported tables support findings of this and other studies which report significantly lower employment multipliers for nonmetropolitan areas than are projected by regional impact models. This article also notes multipliers should be adjusted to individual areas for more accurate community-specific estimates. Garrison, Charles B. "New Industry in small Towns: The Impact on Local Government" National Tax Journal, 24, no. 4: 493-500. This article reports the results of a study which analyzed the net impact of new industry on the local economy and government of five small towns in Kentucky. Regarding the public sector, the school districts received individual analysis. This was the only component of the public side which experienced a growth-related negative impact. And in only one town was the impact significant. Garison used two methods of assessing the impact on the local government. Some disagreement exists as to how the one-time or "transitory" costs (and revenues, if any) to the local government should be accounted for. These are the costs associated with plant location. The first calculation includes all costs and revenues. The second or alternate calculation in effect eliminates those one-time costs. Comparison with five control communities shows industry did affect significantly, the local economies, and in a positive way. Gilmore, John S. and Mary K. Duff, Boom Town Growth Management: A case study of Rock Springs - Green River, Wyoming, Westview Press, Inc., Boulder, Colorado, 1975. This book is the result of a case study of two communities experiencing "boom" or rapid growth. Gilmore and Duff found the economic and social framework within the communities were seriously affected. The housing market, public service provision, and stability of local labor supply were strained by the rapid growth, and unable to respond adequately to accommodate the increased demands. It was evident to the researcher that the traditional processes regulating economic growth were not operating well. The serious issue raised by the experiences with boom town growth is that of growth management. Following discussion of the "boom" phenomenon, growth management principals were presented. Identification of tools and methods of implementing objectives were included in that section. Lonsdale, Richard E. "Two Commuting Patterns in North Carolina" Economic Geography, 42, no. 2: 114-138. This article reports the findings of a study which compared and analyzed two commuting patterns of two manufacturing plants within the same community. Differences between the two patterns were observed and variables were introduced to explain the differences. Following the analysis and comparison of the two patterns, probability models based on gravity concepts were constructed using population and distance as the variables. Seven models using distance measures and five models using time measures tested the two variables' predictive power. The estimates of the models were compared with the actual distribution obtained in the fiber plant commuting pattern. Lemont, William, George Beardsley, Andy Briscoe, John Carver, Dan Harrington, John Lansdowne and James Murray, Tax Lead Time Study, Colorado Geological Survey, State of Colorado Department of Natural Resources, Denver, Colorado, 1974. This study presents the revenue sources available to the State of Colorado and its local governments. Included in the study is a discussion of the revenue alternatives and of techniques to deal with problems caused by rapid population growth. This study was prepared for the Regional Development and Land Use Planning Sub-Committee of the Governor's Committee in Oil Shale Environmental Problems to provide recommendations for new legislation to improve the financing operations available to local governments. As stated in the preface, the intended users of this study are the local government officials, their staffs, citizens of the oil shale area, and the Colorado legislature. Summers, Gene F. and Jean M. Lang "Bringing Jobs to People: Does It Pay?" Small Town, 7, no. 3: 4-11 This article provides a concise summary of important issues determining net impacts to the local private and public sectors. The summary of the issues presented here was taken from their book, "Industrial Invasion in Nonmetropolitan America". Direct employment hiring practices, employment multipliers, income effects, and population growth are discussed as they contribute to net impacts. The information and conclusions reported in the sections represent the work of over 100 case studies in 245 locations and 34 states. The conclusion is that the structure
of the community, actions of the local public officials, and the character of the industry determine what impact industry will have on a community. Employment, population growth, and economic prosperity are not automatic and predictable gains to the host community. Summers, Gene F., Sharon D. Evans, Frank Clemente, G. M. Beck and Jon Minkoff, Industrial Invasion of Nonmetropolitan America: A Quarter Century of Experience, Praeger Publishers Inc., New York, N. Y., 1976. This book is the summary of 25 years of studies of specific plant locations in nonmetropolitan areas in the U. S. The purpose of this work was to determine the effects of industrialization on small towns. Several basic issues were addressed. One is the validity of procedures used with regard to nonmetropolitan industrial development as a tool for promoting the general welfare. Costs and benefits to the public and private sectors provided the framework with which to determine net impacts. The fact that this book presents local community experiences from the local perspective sets this study apart from previous studies, most of which analyzed impacts on the nonlocal private sector. # NEW INDUSTRY IN SMALL TOWNS: THE IMPACT ON LOCAL GOVERNMENT CHARLES B. GARRISON* #### ABSTRACT The establishment of new manufacturing plants in five rural towns in Kentucky typically resulted in a negative direct impact on local government finances. This impact was usually small, however, since most of the new plants added few new residents to the community and there was therefore very little increased demand for local government services. The school system was the unit of government most likely to be significantly affected; a large negative impact resulted if property taxes were substantially avoided and large numbers of new residents were brought to the community. The negative impacts tended to become positive after a few years. NEW industry in rural areas is gaining increased acceptance as a solution for many of the nation's social and economic iils. Persons concerned with alleviating rural economic stagnation and poverty see the dispersion of manufacturing plants and jobs to the countryside a: perhaps their best hope of making rural communities economically viable again. Those concerned with problems of the major cities see rural development as a way of reducing population pressures in urban areas. In addition, new industry is thought by many to be a solution to the problems of rural local governments. New industry, it is hoped, will produce new tax revenue. That new industry may also produce new costs for local government may be overlooked, however. This article reports the results of an effort to determine the conditions under which these additional costs may equal or exceed additional revenues. Further, the costs to local government are compared with the benefits accruing to the local private economy. The case study *Assistant Professor of Economics, The University of Tennessee. The article reports a portion of the findings of a study supported by the Economic Research Service, U. S. Department of Agriculture, and the Bureau of Business Research, University of Kentucky. approach is used; the communities studied are five small towns in Kentucky in which new manufacturing plants located during the period 1958-63. The local government impact is considered as two distinct effects -- the primary and the secondary. The primary effect involves, on the one hand, the additional direct tax revenues derived from the new plant and, on the other, expenditures or changes in services by local government for the express benefit of, or directly attributable to, the new plant. The primary effect is summarized by the quantity "net primary benefits to local government." This quantity may be either positive or negative, and is given by the excess (deficiency) of the new firm's revenue effect over the expenditures effect. The secondary effect involves the impact of the plant's nontax expenditures on local government revenue, expenditures, and ser- The benefits of new industry to the local private economy also include a primary effect, i.e., the employment and payroll of the plant itself, and a secondary effect, i.e., the impact on the local consumption (or "nonbasic") sector of the community's economy. An attempt was made to ensure that no major economic developments other than location of new manufacturing plants occurred in the study towns. Accordingly, the criteria used in selecting the study towns were that they be located outside Standard Metropolitan Statistical Areas, that they be small (a 1960 population between 1,000 and 5,000), and that at least one new plant employing at least 100 people had been established in the community during 1958-63. In addition, towns tied to the economies of neighboring larger cities were eliminated from consideration. The five communities selected are described in Table 1. The new plants produced a variety of products, although three of the eight manufactured apparel of some type. TABLE I DESCRIPTION OF STUDY TOWNS AND NEW MANUFACTURING ACTIVITY | | | Distance to
Nearest | | New Plants | | |-----------|--|-------------------------|--------|------------|---------------------| | Community | Population ^a
(thousands) | Larger Cityh
(miles) | Number | Employment | Year
Established | | A | 2.0 | 60 | 2 | 115 | 1959 | | | | | | 90 | 1962 | | В | 4.0 | 87 | 1 | 100 | 1962 | | C | 2.0 | 45 | 1 | 200 | 1959 | | D | -1.8 | 62 | 3 | 135 | 1958 | | | | | | 100 | 1959 | | | | | | 140 | 1961 | | E | 1.1 | 91 | i | 125 | 1959 | *U. S. Census of Population, 1960. bA city with a population of at least 50,000. The economies of the five communities were characterized in 1958 by low incomes and high rates of unemployment or, more typically, underemployment in agriculture. Per capita incomes in the five study counties1 ranged from \$596 (29 per cent of the national average) to \$995 (43 per cent of the national average). Agriculture typically was the largest single source of personal income, accounting for 30 per cent or more of total income in four of the five counties, but both average farm size and average value of farm products sold per farm were low. Manufacturing was a relatively unimportant source of income; in 1958 three of the five counties had fewer than 100 manufacturing employees. ### I. Net Primary Benefits to Local Government The direct effects of the new plants on local government revenues and costs are given in Table II. Only two of the eight new plants produced significant new revenue, i.e., revenue in excess of that yielded by the property prior to the plant location. In three cases the plant was owned by the city and was therefore not subject to real property taxes (A-2, B, 1"Study town" and "study county" are used somewhat interchangeably as an economic unit. It is difficult to separate small rural towns from the county; further, some local government units affected by new industry are countywide (county governments and school districts). and D-3). In these cases the citics issued industrial revenue bonds and with the proceeds purchased the plant sites and constructed the plant buildings. The manufacturing firms make monthly rental payments to the cities sufficient to cover principal and interest payments on the bonds. In two cases "favorable assessments" on real property resulted in minimal revenue (C and E). The three plants in Community D were located outside the city limits and were not subject to city taxes. The amount and cost of new public services attributable to location of the new plants depended in large measure on the number of new residents brought to the community. New residents mean new school children, and if the previous level of local support is to be maintained, additional revenue is required.² It is also the new residents who force expansion in fire and police protection and other basic services, if they are needed. A community may also incur a cost in providing services directly to the plant itself, such as provision of water services or traffic control. In six of the eight cases reported here, additional costs to local government exceeded additional revenue, i.e., net primary benefits were negative. The additional costs ²This approach was taken in a study of suburban communities by Louis K. Loewenstein, "The Impact of New Industry on the Fiscal Revenues and Expenditures of Suburban Communities," National Tax Journal, XVI (June 1963), pp. 113-136. (2 19 > () (As 1966 I. (As 1960 E- (Ave. 1960-Total *Do The et city vo water t. b, e, the exter were la student: ever, the resulted munity, demand cation. I each case quate loc ber of ne largest coin Comm companies supervisor estimated an increas school sys locations in new emple ntal over the essiniants the city blic new the the new level ad- also n in basic unity vices rovi- atrol. here, mary costs i sub- istein Fiscal Com. (June ex- TABLE II ANNUAL NET PRIMARY BENEFUS TO TOCAL GOVERNMENT OF NEW MANUFACTURING PLANTS, FIVE RURAL COMMUNITIES IN KENTLICKY | | | • | | |------------------------------|-----------------------|--------------------------------|------------------------| | Community
and Plant | Additional
Revenue | Cost of Additional
Services | Net Primar
Benefits | | A-1
(Average,
1960-63) | \$2,505 | \$ 2,675 | \$ · ·170 | | A-2
(1963) | 28 | 3,400 | - 5 572 | | B-1
(1963) | 24 | 511a | 535 | | C-1
(Average,
1960-63) | 54 | 953 | 899 | | D-1
(1963) | 187 | Op | 187 | | D-2
(Average,
1960-63) | 517 | 1,320° | 1,837 | | D-3
(Average,
1962-63) | 530 | 1,200 ^d | 670 | | E-1
(Average,
1960-63) | -12 | 0 | 42 | | Total | \$2,805 | \$10,059 | \$ 7,254 | aDoes not include a cost to the city government of \$92,000 assigned entirely to the year 1962. The expenditure was made from the proceeds of a tax-supported industrial bond issue approved by city voters in 1957, and
represents the donation of the plant site and the construction of an elevated water tank and sewage disposal plant on the site. b. c. dDoes not include one-time costs to the city of \$1,200, \$8,000, and \$10,000, respectively, for the extension of water lines. Source: Municipal, county, and company records and interviews. were largely due to the addition of new students to the local school systems. However, the typical plant location studied here resulted in few new residents in the community, and therefore very little increased demand for public services, including education. Indeed, a major location factor in each case was the availability of an adequate local labor force. The largest number of new residents, and accordingly the largest cost to local government, occurred in Community A, where each of the two companies brought in 15 managerial and supervisory employees. Company officials estimated that each plant accounted for an increase of 25 students in the local school system. The remaining six plant locations involved the transfer of only 19 new employees and a total of 27 new students. The small number of new residents had important implications for local government: the direct effect on public expenditures as well as revenues was typically small. Thus, whether net primary benefits were negative or positive, they were likely to be small. The impact was by no means uniform among the several units of local government studied. The units most susceptible to a legative effect were the school districts (Table III). To estimate the cost of new students, it was assumed that the cost to the school district of educating an additional student without reducing the quality of education received by other students is equal to the average local revenue per student. It might be argued that, with the exception of Community A, the num- TABLE III ANNUAL NET PRIMARY BENEFITS OF NEW MANUFACTURING PLANTS, BY TYPE OF LOCAL GOVERNMENT UNIT, FIVE RURAL COMMUNITIES IN KENTUCKY | City | School
District | County | Community and Plant | |----------------------|--------------------|--------|---------------------| | \$ 1,025 | \$-1,563 | \$ 370 | A-1 | | -1,000 | 2,380 | 9 | A-2 | | 511 | 18 | 6 | B-1 | | 709 | 197 | 8 | C-1 | | 0 | 135 | 52 | D-1 | | 0 | 1,693 | 144 | D-2 | | 0 | 818 | 1.48 | D-3 | | t | 23 | 18 | E-1 | | \$1,194 ⁸ | \$6,511 | \$ 455 | Total | "One-time" costs omitted from calculation; see Table II footnotes. Source: Municipal, county, and company records and interviews. ber of new students was so small that they could be absorbed without diluting the quality of education. Indeed, alternate treatments could be defended for a number of revenue and expenditure items entering into the calculation of net fiscal impact. These ambiguities in large part disappear, however, if the calculation is made for a later year. Such an "improved" calculation is shown in Table IV, which differs from Table II in the following respects: - 1. Tax concessions initially granted by local government but later removed result in larger revenue effects. Specifically, real property assessments were increased substantially for plants C-1, D-1, and E-1. In the opposite direction, correction of an assessment error discovered in 1966 reduced the revenue yielded by plant A-1. - duced the revenue yielded by plant A-1. 2. An alternate treatment of the revenue calculation is accorded plant D-2. This firm moved into a building previously occupied by a manufacturing concern which had left the community in 1957. When the new firm acquired the property, the assessment was reduced, apparently reflecting the purchase price. It may reasonably be argued that the resulting decline in tax revenue should not be attributed to location of the new firm but to the loss of its predecessor. Accordingly, Table IV treats the total taxes paid by the new plant as "additional revenue." - 3. The cost of new students, except in Community A, is considered to be zero. The costs which remain are those repre- senting actual outlays which will recur well into the future. The effect is to eliminate from consideration one-time costs incurred at the time of plant location (in cases B-1, D-1, D-2, and D-3). Further, in case C-1 an annual outlay incurred by the city was completed in 1968.³ In the other direction, the cost associated with plant A-2 was increased in 1965 by a further addition of 15 new residents and 20 new school children, The alternate calculation to a considerable extent removes from the analysis the "transitory" cost and revenue effects, i.e., those associated with the actual plant location process or applicable for only a limited time period following the plant location. By this calculation modest gains accrue to three of the communities and only in Community A is there a significant negative impact. Community A was the only study town receiving a sizeable number of new residents; payment of all taxes by plant A-1 was not sufficient to offset the added cost of new students. ### II. Benefits to the Local Economy Small towns which recruit new industry obviously consider the stimulus to the local ³The "one-time" cost of \$92,000 incurred by the city in case B-1 might be considered an annually recurring cost in the amount of the tax required to support the industrial bond issue. At any rate, the bond issue was retired, and the supporting tax was eliminated, in 1966; accordingly, no cost is assigned to the post-1966 period. # ANNUAL NET PRIMARY BENEFITS TO LOCAL GOVERNMENT OF NEW MANUFACTURING PLANTS, FIVE RURAL COMMUNITIES IN KENTUCKY: ALTERNATE CALCULATION | Community
and Plant | Additional
Revenue | Cost of Additional
Services | Net Primary
Benefits | |------------------------|-----------------------|--------------------------------|-------------------------| | A-1 (1966) | \$1,655 | \$2,675 | \$ -1,020 | | A-2 (1965) | 29 | 5,360 | -5,332 | | B-1 (1967) \$ | 24 | 0 | 24 | | C-1 (1968) | 875 | 0 | 875 | | D-1 (1964) | 906 | 0 | 906 | | D-2 (1964) | 1,667 | 0 | 1,667 | | D-3 (1964) | 530 | U | 530 | | E-1 (1967) | 1,285 | 0 | 1,285 | | Total | \$6,922 | \$8.035 | \$1,113 | Source: Municipal, county, and company records and interviews. private economy as the major benefit to be derived. It is of interest, then, to provide an estimate of such benefits in the case studies reported here. Table V gives the estimated impact of the new plants on personal income in the five communities (where the unit of study is actually the county). The total impact consists of two components: (1) the direct or primary effect, which represents the increase in the community's basic income, and (2) the secondary effect, which represents the increase in nonbasic income. The distinction between "basic income" and "nonbasic income" derives from the concept of an economic base. The basic income of a community is earned in those activities which export goods and services to other areas.4 Nonbasic income, on the other hand, is earned in the local consumption sector of the county's economy. This sector is dependent on the respending locally of basic income. The increase in basic income here attributed to new industry is measured by the 1963 plant payroll, less the earnings of employees who commuted from other counties. The total increase in income due to new industry is equal to the community income multiplier times the new industry payroll accruing to county as try cal 1 by an tax isue. i the ac- 1966 4Basic activities in the counties studied here include agriculture, mining, manufacturing, and, in some cases, certain other components such as retail and services income associated with tourism, income earned by county residents commuting to jobs outside the county, and transfer payments. residents. The estimated multipliers for communities A through D are, respectively, 1.46, 1.73, 1.43, 2.02, and 1.26.5 The interpretation is that, in Community A, an increment of \$100 in new industry wages paid to local residents led to an increase of \$46 in nonbasic income. The secondary impact on employment was relatively smaller than that on income. For the five counties combined, employment of the new plants was 1,517 in 1963, 1,177 of whom were county residents. But the associated increase in nonbasic employment was estimated as only 98 jobs. This estimate involved calculating for each county the ratio of the increase in basic income "required" to generate one additional nonbasic job. For example, in Community A an increase of \$30,830 in basic income during the study period was required per additional nonbasic job. The implication for new industry is that for each \$30,830 in annual wages paid to county residents, one additional job was created in the county's nonbasic sector. Apparently the small secondary effect on 5The multiplier for a county was calculated as the ratio of the total increase in annual income to the increase in annual basic income, with 1958 serving as the base year and 1963 as the terminal year. Calculation of the multiplier thus involved separating the county's personal income into basic and nonbasic components. While subject to serious limitations if applied to complex economies, this type of analysis appears well suited to small economies characterized by a minimum of interindustry relationships. TABLE V ESTIMATED IMPACT OF NEW INDUSTRY ON COUNTY INCOME, 1958-63, FIVE RURAL COMMUNITIES IN KENTUCKY | Community | Increase in
Basic Annual
Income | Increase in
Nonbasic Annual
Income | Total Impact on
Annual Income | |-----------|---------------------------------------|--|----------------------------------| | | (Thousar | nds of dollars) | | | A | 1,007 | 466 | 1,473 | | В | 326 | 238 | 564 | | Ü. | 663 | 287 | 950 | | Ď | 1,076 | 1,098 | 2,174 | | Ē | 463 | 120 | 583 | | Total | 3,535 | 2,209 | 5,744 | Source: Author's estimates. employment is explained by underutilization of employees in the local consumption
sector prior to the location of the new plants. This sector could then accommodate increased sales without a commensurate increase in employment. This explanation is supported by the minor role of the construction industry in the secondary impact (13 of 98 new nonbasic jobs); apparently the communities' capital stock was also underutilized. The lack of a significant effect on nonbasic employment is demonstrated further by the fact that the income multiplier effect on wage and salary income was smaller than the effect on proprietors' and property income. #### III. Secondary Impact on Local Government The calculation of new industry's effect on local government has considered only the direct or primary impact, while it was pointed out that the impact on the local private economy consisted of both a primary and a secondary effect. The possibility thus exists that the multiplier effect on the nonbasic sector might result in a significant secondary effect on local government revenues or expenditures. The evidence suggests that such an effect in the five case studies reported here, if it exists at all, is quite limited. As noted above, the economic impact did not include a population increase; the new plants themselves brought in very few new residents, and the relatively small employment expansion in the local consumption sector doubtlessly also came from the local labor force. (Population estimates indicate a decline of 2.9 per cent for the five counties during the 1958-63 period.) Further, analysis of construction industry data and interviews with local businessmen indicated very little investment in new business or residential construction during the study period. One would thus expect a net secondary effect on local government of no increase in the demand for local government services and little or no increase in the revenues, since the local revenue base was dominated by the assessed value of real and personal property.6 This conclusion tends to be supported by an analysis of local government data covering the five study communities and a group of five "control" communities which had similar economic characteristics but did not receive new industry (Table VI). For all local government units combined, the relative increase in direct general expenditures from 1957 to 1962 was somewhat greater in the study communities than in the control group, but the range of increases within the groups was even larger. And if the analysis is extended to 1967, the percentage increase in expenditures was actually larger in the control group. There 6At the state government level, Legler and Shapiro have observed that the responsiveness of revenue to economic growth of a particular tax varies according to whether the income increase is due to per capita improvement or to population growth. See John B. Legler and Perry Shapiro, "The Responsiveness of State Tax Revenue to Economic Growth," National Tax Journal, XXI (March 1968), pp. 46-56. TABLE VI COMPARISON OF STUDY AND CONTROL COMMUNITIES: CHANGE IN LOCAL GOVERNMENT REVENUES, SERVICES, AND EXPENDITURES | | | Study Co | mmunities | Control C | iommuniti es | |-----|--|-------------------------------|--------------------|---|---------------------| | | Item | Change | Per cent
Change | Change | Per cent
Change | | I. | All Local Government Units (1957-62) | - | | *************************************** | | | | General revenue (\$1,000) Per capita | 2,638
\$ 35 | 57.0
61.2 | 1,932
\$ 33 | 55.0
60.0 | | | Direct general expenditures (\$1,000) Per capita | 2,998
\$ 3 9 | 66.6
70.2 | 1,955
\$ 33 | 58.0
62.2 | | II. | Employment School Districts (1959-64) | 31 | 2.5 | 141 | 16.0 | | ••• | Enrollment
Number of teachers
Full market value of taxable | 359
1 | 1.8
0.1 | —411
—3 | 2.6
0.5 | | | property (\$1,000) Local revenue (\$1,000) | 78,483
103 | 32.1
7.4 | 50,787
78 | 39.4
10.6 | | ī. | County Governments (1959-64) Operating expenditures (\$1,000) | 191 | 34.0 | 98 | 25.4 | | V. | Municipal Governments (1958-63) | | | , , | | | | Assessed value of property (\$1,000) | 2,437 | 15.6 | n.a. | n.a. | | | Property tax revenue (\$1,000) Total revenue (\$1,000) | 18
167 | 13.6 | n.a. | n.a. | | | Expenditures (\$1,000) | 167 | 49.7
39.9 | n.a.
n.a. | n.a.
n.a. | n.a. Not available n.a. Not available Source: For I, U. S. Bureau of the Census, Census of Governments: Kentucky VI (1957), Table 36, and VII (1962), Tables 27 and 28. For II, Kentucky Department of Education, Report of Superintendent of Public Instruction, (Frankfort: Kentucky Department of Education), XXVII (1959) and XXXIII (1964) and Kentucky Department of Revenue. For III, Kentucky Auditor of Public Accounts, "Report on Examination," 1959 and 1964. For IV. Municipal records of the five study communities. For IV, Municipal records of the five study communities. is some evidence of relatively greater dependence on nonlocal sources of revenue by the control communities during the study period. This is perhaps explained by the fact that incomes were lower in these counties than in the study group. The analysis of the private economic impact indicates that about 15 per cent of the per capita income difference between the two groups as of 1963 was attributable to the study communities' new manufacturing plants. #### IV. Summary and Conclusions The establishment of new manufacturing plants in five rural towns in Kentucky during the period 1958-63 typically resulted in a negative direct impact on local government finances. Of equal importance, however, this impact, summarized in the quantity "net primary benefits to local government," was usually small. Most of the new plants studied here added few new residents to the community; the availability of local labor was in fact a major reason for the locations. For this reason there was very little increased demand for local government services, and this factor served to keep the magnitude of negative impacts relatively small. A large negative impact resulted for the school system only if property taxes were substantially avoided and significant numbers of new residents (and school children) were brought to the community. A sizeable negative impact on the municipal government occurred if a large nontax inducement (e.g., provision of water or sewer services or donation of land) was combined with property tax avoidance. There was a tendency in the towns studied here for the negative impact to be converted into positive net primary benefits (although rather modest in magnitude) a ## TWO NORTH CAROLINA COMMUTING PATTERNS Richard E. Lonsdale Dr. Lonsdale is assistant professor of geography at the University of North Carolina, Chapel Hill. Research was supported by a grant from the University's Institute for Research in Social Science. HIS study examines the commuting patterns of production workers at two industrial establishments in eastern North Carolina. are fourfold: (1) to analyze and com-Each of the two plants investigated is situated in the area of Kinston, a city of nearly 30,000 population, and together they account for well over half of the manufacturing employment in the county centered on that city. One of the establishments, a producer of synthetic fiber,2 employs approximately 2200 persons and is noted for its "aboveaverage" wages; it employs workers who commute from points within a broad area extending out 40 miles and more. The other plant, a shirt factory,3 employs about 900 persons, and is considered "below-average" in its wages; it draws much-of-its labor from the area in the immediate vicinity of the plant. The two industrial facilities thus provide a broad spectrum of wages and commuting distances and facilitate an examination of wages and other factors as variables affecting the pattern of commuting of industrial workers in the area. The study was conducted in the spring of 1964. The specific objectives in this study pare the characteristics of the two commuting patterns and identify the respective labor market areas; (2) to observe the effect on commuting of such personal factors as wages, age, sex, and length of service; (3) to investigate the significance of two geographic variables -population and distance-by constructing a series of probability models based on gravity concepts; (4) to consider some other geographic variables which may explain discrepancies between the actual distribution of commuters and those suggested in the probability models. These probability models are not universally applicable, but they may nevertheless provide a tentative basis for estimating the potential availability of commuting labor in areas where conditions might be similar to those in eastern North Carolina. Commuting studies have a proper and important place in geography. Commut-King distance can be used as a basis for delimiting labor market areas or "laborsheds"—the area supplying labor to some central point. The labor-shed is a regional conception—an extent of space functionally organized about some nodal point such as an individual complex of by a city. work" pat for delimit regions acr territory. C raphers the skills in se portant pr ample, the potentially directly in: extent of t number of to commute consideratio a new locas supply mus ternative pla Commutii appropriate of North C factory, a attract new employment income levels for manufac the large st work for wag by national a prevailing in pations in conducted by Commission that a large labor remains is especially where out-mis slowly than i * The average manufacturing \$1.69, the lowe States. The nat: workers at this (For example Company establ in 1957, they h openings, far in of applicants; s Small Labor Security Commi ¹ Kinston is the commercial center and largest town in Lenoir County, which has a population approaching 60,000 and
manufacturing plants employing about 5600 persons. E. I. du Pont de Nemours & Company, Kinston plant, established in 1953, is a major supplier of Dacron B polyester fiber. The Kinston Shirt Company, in operation since 1937, accounts for about 2 per cent of the United States output of men's dress and sport :NS rom onducted his study and comthe two ntify the 5; (2) to g of such sex, and igate the variables by cony models to convariables icies beof comin the obability plicable. covide a the pong labor ight be North per and ommutpasis for "laborabor to -shed is tent of out some dividual factory, a group of plants, or a whole complex of economic activities embraced work" patterns could form the basis for delimiting networks of overlapping regions across the whole expanse of a territory. Commuting studies offer geographers the opportunity to apply their skills in seeking answers to some important practical questions. For example, the extent of the labor force potentially available at some point is directly influenced by the territorial extent of the labor-shed, i.e., by the number of miles workers are willing to commute. This may be an important consideration when an industry seeking a new location with an assured labor supply must decide among several alternative places. Commuting studies are particularly appropriate and pertinent in the case of North Carolina, a state striving to attract new industry in order to expand employment and raise presently low income levels. The traditional attraction for manufacturing concerns has been the large supply of labor willing to work for wages which, though "modest" by national standards,4 are above those prevailing in many non-industrial occupations in North Carolina. Surveys conducted by the Employment Security Commission of North Carolina indicate that a large reservoir of employable labor remains to be tapped; the supply is especially abundant in rural areas6 where out-migration has proceeded more slowly than might be expected in view The average hourly wage in North Carolina manufacturing plants in October, 1964, was \$1.69, the lowest for any state in the United States. The national average for manufacturing workers at this time was \$2.47. *For example, when the Proctor Electric Company established a new plant at Mr. Airy in 1957, they had 3500 applicants for 288 job openings, far in excess of the anticipated number of applicants; see "Staffing a New Plant in a Small Labor Market Area" (Employment Security Commission of N.C., Raleigh, 1960). of the limited economic opportunities in many of these areas. Given an opporby a city. Commuting or "journey-to-7 tunity to work in a nearby industrial plant, rural and small-town dwellers have shown a marked propensity to maintain their established place of residence and a willingness to commute great distances to work.7 Thus industries often draw their labor from remarkably broad geographic areas, As might be expected, the higher-wage industries are able to attract labor from much wider areas than are other industries; this point will be demonstrated later in this paper. An industry considering a location in North Carolina can compare the wages it is prepared to offer with those prevailing in a specified area, and with an understanding of commuting tendencies in this region, it can proceed to estimate the size of the labor force that might be marshalled at any particular point. > While this paper focuses on two individual cases in a single region, the study is intended to be of more than just local interest. Hopefully, it will be of use to other analysts undertaking similar studies by pointing out some of the problems encountered in conducting such journey-to-work surveys. In addition, the paper presents one method for analyzing a commuting pattern. Also, by adding to the number of studies of individual areas, the likelihood of developing a general theory on commuting is perhaps improved by some small degree. It can be reasoned that if an acceptable general theory on travel-towork behavior is ever to be established, ⁷ K. J. Walraven discusses this same point in his Arkansas study: "Impact of New Plants on Local Labor Supply: Northwest Arkansas" (Little Rock, Ark., 1962). The extensive reserves of labor in and around small towns has also been observed in the Middle West by Richard C. Wilcock and Irvin Sobel: "Small City Job Markets: The Labor Market Behavior of Firms and Workers" (Urbana, III., 1958). *the key elements in the theory—e.g., the relationships between commuting distance and wages, length of service, etc.—will likely be discerned from a multitude of individual empirical studies. ### THE STUDY AREA Workers commuting to the two industrial plants examined in this paper are mostly drawn from a ten-county area? on the coastal plain of eastern North Carolina (Table I and Fig. 1). There are no major natural features such as mountains or large water bodies which seriously influence the general geographic pattern of commuting, Significant differences in the density of paved roads do exist, however; the availability of such roads decreases as one moves south and eastward (Table I). This reflects diminishing population densities toward the south and east where the land is decidedly less suitable for agriculture because of poorer soil and drainage conditions. About one-third of the study area's labor force is in agriculture (compared with 7 per cent nationally); tobacco is by far the most important crop, with peanuts, cotton, corn, and soybeans also significant. The population of the ten-county area was approximately one-half million in 1960, up about 8 per cent from 1950 (compared with a national gain of 19 per cent in the same period); four counties experienced population losses in this decade (Table I). The population density ranges from about 150 per square mile in the northwest to less than 50 in the south and east (Table I). Five towns (Goldsboro, Greenville, Kinston, New Bern, and Wilson) have populations over 10,000; overall the Ten counties supply approximately 98.5 per cent of the commuters who identified their residential location on a questionnaire. Small numbers of commuters originate from four other counties (Edgecombe, Martin, Onslow, and Pamlico). population is about 30 per cent urban, nearly average for North Carolina, but far below the national level. The Negro population is rather uniformly high, averaging about 40 per cent, and Negroes account for about a quarter of the manufacturing labor force. Cincome levels are generally low. In 1962 the average per capita personal income in the study-area counties ranged from about \$900 to \$1500, averaging two-thirds the state mean and less than half the national level. Wages in manufacturing, which employs about 17 per cent of the area's labor force, are generally above those in most other branches of the economy, but still averaged scarcely \$70 a week in 1963, The leading branches of manufacturing are food products, textiles, apparel, wood products, and chemicals. The majority of food, textile, and apparel workers earn between \$1.25 and \$1.50 an hour, while those at the large synthetic fiber plant near Kinston average over 82.50 an hour. Local chambers of commerce boast of the "lack of labor strife" and the prevailing absence of strong labor unions. But economic opportunities are limited, unemployment has been high, and many workers remain underemployed. ### THE QUESTIONNAIRE ∠A travel-to-work questionnaire (Fig. 2) was given all production workers (wage earners) at the two industrial plants. Salaried personnel were omitted only because company officials preferred they be excluded. The questionnaires were distributed and collected by plant supervisors, and there was a return rate of about 90 per cent. Of the returned questionnaires about 10 per cent were screened out because of incomplete or obviously false answers. The final sample population consisted of 1052 workers at the synthetic fiber plant and 734 workers 1786 wa of the sample ent urban, rolina, but The Negro mly high, id Negroes er of the y low. In i personal ies ranged averaging l less than in manuut 17 per orce, are ost other but still in 1963. **ifacturing** apparel, cals. The d apparel and \$1.50 arge syna average imbers of of labor sence of economic nemployworkers ire (Fig. workers adustrial omitted oreferred onnaires by plant urn rate returned ant were plete or I sample workers and 734 Fig. 1. workers at the shirt factory, a total of 1786 wage earners. The questions asked of the workers are indicated in the sample questionnaire shown as Figure 2. Workers living a significant distance (over 3 miles) from the plant were also asked to locate their place of residence on a map included on the questionnaire. SOME CHARACTERISTIES OF INDIVIDUAL COUNTIES IN THE STUDY AREA | | | Pupul | Pupulation, 1960 | | | | Emple | Em ployment | | I I | Інсоме | | | |-----------------------------|------------------|-----------|------------------|-------|---------------|---------------|----------------------|---------------|----------------|-------------------|------------------------|--|--------------------------| | | Toda) | Per cent | Density | Per | Per | Total | Agricultural
1960 | ltural
n.t | Manufac- | Per | Areruge
weekly mfg. | Per cent of
labor force
unemployed | Pared
roads.
1963. | | | | 1950-1960 |
E | кгран | non-
While | 1,0801. | No. | Per | 1963b.e | 6upila
1962°.1 | Wages
1963b.e | N 901 | 5q. mi. | | CLNIKAL COUNTES | | +20 | 4 | 3 | Ş | 910 81 | 1 683 | ; | 5 | | 03 3113 | | | | Pitch | 69,942 | 2, | 8: | 3. | * | 22,353 | 6.488 | : 2: | 3,270 | 1,387 | 72.39 | n se | 1.84 | | | | ì | 3 | , | 3 | 4,531 | 2,831 | 3 | 132 | 1,288 | \$2.27 | ≠ . | 1.70 | | Northwestern Counties Wayne | | 82+ | × 2. | 7 | 37 | 22.522 | 5,087 | 22 | 3,328 | 1.472 | 72.68 | 9.0 | 1.74 | | Johnston | 57.716
62.936 | + -
S | 7.9 | 88 | 2 2 |
19,596 20,989 | 6,768 | 32 | 3,915 | 1.510 | 67.34 | 7.10 | 1.83 | | Sortman Colvines Daplin | 40,270 | -22 | | 00 | æ : | 13,259 | 5,893 | \$: | 2,085 | 1,193 | 04.40 | 0.4 | 1,74 | | East av Carvilles | | • | ; | • | ÷ | 001.0 | ì | | . | 706 | £ | 5 | 93.0 | | | 56,014
58,773 | +20 | £ # | 28 | 2.5 | 11,061 | 2,866 | 26
16 | 2,095
2,031 | 1,265 | 53.32 | 6.6 | 1.05 | | | | 1 | - | - | - | | - | - | | - | | | | physnem Security Commission of N.C., Kalcikh, 1964, Table 5. THE TY The basi , commuter g II. As is c are rather s length of c carned only at service crease with Siger great ratio betw Symuted, th . , jemale l \$1.25 an he within the . Lür numl work. The · and, is sit des outsic > Тик М There is e c most sa sains. In traight mi ploved. A t commuting ates). The a mutes is 1. measure 1 employe # 146. Two Sample Populations The basic characteristics of the two suter groups are indicated in Table 1- is evident, the two populations either similar with regard to age and the of employment (the fiber plant , and only in 1953; the average length arrice of fiber workers should inwith the passage of time), but or greatly in average wages and the between sexes. As would be you ted, the shirt factory relies heavily remale labor, most of whom receive st 25 an hour. The shirt firm is located . the city of Kinston, enabling for number of employees to walk to The fiber plant, on the other and, is situated in the country, seven · des outside of Kinston, and essentially a employees commute by automobile. ### THE MEASURE OF COMMUTING There is some question as to what is most satisfactory measure of combag. In the majority of studies a stright mileage measurement is emported. A few analysts have measured mainting distance in time (i.e., minos). The popularity of miles over the is understandable; mileage can measured directly from an ordinary TABLE II CHARGIERISTICS OF TWO COMMUTER GROUPS | | Fiber Plant | Shirt Factory | |---|-------------|---------------| | wake carners | 1.052 | 734 | | | 875 | 71 | | ** | 177 | 663 | | en the employment | 98 mos. | 82 mos. | | *********** | 98 mos. | 86 mos. | | *** | 97 mos. | 81 mos. | | | 32.1 yrs. | 32.7 yrs. | | ********** | 32.3 yrs. | 31.2 yrs. | | *** | 31.4 yrs. | 32.9 vis. | | * wirely wage | \$109.13 | \$51.75 | | 4. | 111.77 | 60.00 | | | 96.54 | 51.06 | | nveyance | | -1 | | *************************************** | 1,051 | 608 | | F., | 1 | 1 1 | | | Ó | 122 | | | n | 3 | road map, whereas the determination of travel time requires either a field survey or an interview of workers actually doing the commuting. The use of time as a measure can be defended on the ground that a worker's willingness to commute presumably depends in part on the "effort" involved. Ten miles of "fast" open highway requires less effort than 10 miles of "slow" city streets or dirt roads, and in this instance the number of miles would likely be a poor measure of commuting distance. Along this line, one geographer has recently suggested that commuting be measured in terms of "travel effort," taking into consideration the number of stop signs, turns, congestion, etc.9 But the obvious difficulty in obtaining such data for all the roads in the commuting area will likely preclude much use of this measure. Cost has been suggested as a possible measure of commuting. The assumption is that the expense involved may, beyond a certain limit, discourage commuting. However, in this study area and in most others, many workers join car pools, and for them the cost is relatively minor compared with the time involved. On the other hand, a worker driving alone 30 miles each way would, at the rate of eight cents a mile, incur a daily expense of almost five dollars. In this study, information on commuting mileage and time was obtained from the questionnaires. The presumption was that one might provide a better measure of distance than the other. To test the relationship between the two, time and mileage distance values for a 10 per cent random sample of fiber workers were plotted against one another on a scatter diagram (Fig. John D. Nystuen: A Measure of Effective Distance in Urban Travel, Abstracts of Papers, 20th International Geographical Congress, London, 1964. # TRAVEL-TO-WORK QUESTIONNAIRE A University of North Carolina research group is anxious to find out how much time workers spend travelling to and from work. The results of this and other studies will contribute to an overall understanding of North Carolina's industrial labor force, and will assist in developing plans for continued industrial progress. Your cooperation in answering the questions below will be greatly appreciated. After completion of this form, please deposit it in the box marked "Travel-to-Work Questionnaire", which will be placed in a convenient location in your plant. Thank you very much. | 1. | Name of company where you now work: | |----|---| | | (a) How long have you worked for them? years. | | 2. | How many miles from the plant do you live? miles. | | 3. | How long does it take you to get to work? minutes. | | 4. | How do you get to work? (auto, bus, walk, etc.) | | 5. | Have you moved closer to work since taking your present job? | | | (a) If so, how many miles from work did you live previously?miles. | | 6. | Are you now considering moving closer to the plant? | | 7. | Personal data: (a) age (b) sex (c) average weekly wage, before taxes: 3 . | 8. If you live more than three miles from where you work, place an "X" mark on the map below, showing approximately where you live: F1G. 2. Fig. 3. showing rela and commusample of n 3), As w trend was of correla. high +.96 as satisfac A regressi the "X" the "Y" equation : indicates commutin. per addit "zero" ii 6.6 minut a measure time con getting o from park possible over the the degredistribution Fig. 3. Scatter diagram and regression line showing relationship between commuting mileage and commuting minutes, based on a 10 per cent sample of fiber plant workers. 30 COMMUTING MILES 40 20 3). As would be expected, a positive trend was clearly evident. The coefficient of correlation between the two is a very high +.96, suggesting that one is about as satisfactory a measure as the other. A regression line was established, with the "X" axis representing miles, and the "Y" axis minutes. The regression equation is Y = 1.25x + 6.58, which indicates that for fiber workers the commuting time increases 1.25 minutes per additional mile, and to commute "zero" miles requires approximately 6.6 minutes. The latter is presumably a measure of "terminal time," i.e., the time consumed in starting the car, getting out of the driveway, walking from parking lot to plant gate, etc. The possible superiority of one measure over the other is perhaps indicated by the degree of association between actual distributions of commuters and those distributions suggested by probability models based on gravity-model concepts. Twelve such models were constructed, using both miles and minutes as measures of distance; they are discussed later in this paper. A closer fit was obtained using mileage as a distance measure, but at best this is highly inconclusive evidence. In the probability models the frictional value attached to distance can be adjusted ad infinitum. It is indeed likely, therefore, that fits better than those achieved in this study could be obtained. In this study mileage is used more extensively than travel time only because it facilitates comparisons with other commuting studies, most of which used mileage exclusively. # CHARACTERISTICS OF THE TWO COMMUTING PATTERNS ... The higher-wage fiber plant workers commute considerably farther than do shirt factory workers. The spatial extent of the two labor-sheds, in this case arbitrarily defined as the region encompassing the nearest 90 per cent of an individual plant's labor force, is shown in Figure 4. The fiber plant labor market area extends out almost twice as far from the point of employment and embraces an area about three times larger than the labor-shed for the shirt factory. Fiber plant workers travel an average of 17.5 miles each way and require an average of 28.7 minutes to cover this distance; median figures are approximately 13 miles and 27 minutes. By contrast, shirt factory workers travel an average of 6.7 miles one-way and require an average of 18.2 minutes; the median values are about 4 miles and 17 minutes. The distribution of commuters by five-mile and ten-minute zones for each of the plants is given in Tables III and IV. As can be seen by the figures in the cumulative percentage miles. uch time studies -to-Work labor ited. k on the Laborsheds delimited to include nearest ninety per cent of commuters Fiber plant laborshed (90% of workers within 38 miles) Shirt factory laborshed (90% of workers within 20 miles) Fig. 4. Zone Total.... columns of the shirt wo their place half of the distance fro cent of the ' or more, w shirt worker striking diff€ ing habits surprising in two-to-one of fiber work of the shirt more rural-s seven miles (The com workers app average, an somewhat le lished surve Carolina E1 mission, 77 Carolinians 15 miles of per cent with within 15 m of the shirt of the fiber that in ave the fiber [above the factory (85. TABLE III DISTRIBUTION OF COMMUTERS BY MILEAGE ZONES | • | | F | iber plant wo | rkers | .s/ | irl factory we | wkers | |--|-----------|--------|----------------------|------------------------|--------|----------------------|------------------------| | Zone | Miles | Number | Per cent
of total | Cumulative
per cent | Number | Per cent
of total | Cumulative
per cent | | 1 | 0-4 | 113 | 10.7 | 10.7 | 4.35 | 59.3 | 59.3 | | 2 | 5-9 | 258 | 24.5 | 35.2 | 71 | 9.7 | 69.0 | | | 10-14 | 201 | 19.1 | 54.3 | 81 |
11.0 | 80.0 | | •••••••••••••••••••••••••••••••••••••• | 15-19 | 82 | 7.8 | 62.1 | 72 | 9,8 | 89.8 | | 5 | 20-24 | 117 | 11.1 | 73.2 | 40 | 5.5 | 95.3 | | o | 25-29 | 61 | 5.8 | 79.0 | 25 | 3.4 | 98.7 | | <i>7</i> | 30-34 | 55 | , 5.2 | 84.2 | 8 | 1.1 | 99.8 | | 8.,,,,,,,,,,,,,,,,,,,,,,, | 35-39 | 78 | 7.4 | 91.6 | 1 | 0.1 | 99.9 | | 9 | 10-11 | 54 | 5.1 | 96.7 | i | 0.1 | 160.0 | | 0 | 45 & over | 33 | 3.1 | 99.8 | Ō | | | | Total | | 1,052 | 99.8 | | 734 | 100.0 | | columns of these tables, 80 per cent of the shirt workers live within 14 miles of their place of work, whereas just over half of the fiber workers live a similar distance from their plant. Over 15 per cent of the fiber workers travel 35 miles or more, while virtually none of the shirt workers commutes that far. The striking difference between the commuting habits of the two groups is not surprising in view of the better than two-to-one wage differential in favor of fiber workers, and the in-city location of the shirt factory as opposed to the more rural site of the fiber plant some seven miles outside Kinston. The commuting distance of fiber workers appears to be above the state average, and that for shirt workers somewhat less than average. In unpublished surveys conducted by the North Carolina Employment Security Commission, 77 per cent of the North Carolinians they interviewed live within 15 miles of their place of work, and 93 per cent within 24 miles. By comparison, within 15 miles of work are 80 per cent of the shirt workers but only 54 per cent of the fiber workers. It is worth noting that in average weekly wages in 1964 the fiber plant (\$109) is also much above the state mean, and the shirt factory (\$52) again below average. A federal government survey of 6000 households in 357 geographic areas of the United States, conducted in October, 1963, provides a kind of "national norm" with which the two commuting patterns in this study can be compared.10 According to this survey, 45 per cent of American workers commute up to four miles, and 76 per cent up to 10 miles. For these distances the fiber plant percentages are 11 and 40, indicating that its commuting distances are considerably above the national mean. The shirt factory percentages are 59 and 71, or much closer to the national average. The meaningfulness of such comparisons can be seriously questioned, as the national figures reflect largely urban conditions dissimilar to those prevailing in eastern North Carolina. It is difficult to compare the commuting patterns in this study with those in previous studies of other areas in the United States. Comparisons of this sort suffer because of great differences in such circumstances as degree of urbanization, city size, terrain, availability of paved roads, mode of transportation, job opportunities, wage levels, etc. With these limitations in mind, a few com- ⁴⁹ Home-to-Work Travel, advance report, 1963 Census of Transportation, Bureau of Census, Washington, 1965, p. 6. TABLE IV DISTRIBUTION OF COMMUTERS BY TIME ZONES | | | Fiber plant workers | | | Shirt factory workers | | | | |------------|-----------|---------------------|----------------------|------------------------|-----------------------|----------------------|------------------------|--| | Zone | Minutes | Number | Per cent
of total | Cumulative
per cent | Number | Per cent
of total | Cumulative
per cent | | | 1 | Under 10 | ,16 | 3.4 | 3.4 | 131 | 17.9 | 17.9 | | | 2 | 10-19 | 288 | 27.4 | 30.8 | 308 | 42.0 | 59.9 | | | 3 | 20~ 29 | 258 | 24.5 | 55.3 | 130 | 17.7 | 77.6 | | | 4 , | 30-39 | 173 | 16.4 | 71.7 | 97 | 13.2 | 90.8 | | | 5 | 40-49 | 164 | 15.6 | 87.3 | 59 | 3.0 | 98.8 | | | 6 | 50-59 | 57 | 5.4 | 92.7 | 5 | 0.7 | 99.5 | | | 7 | 60 & over | 76 | 7.2 | 99.9 | 4 | 0.5 | 100.0 | | | Totals | | 1,052 | 99.9 | | 734 | 100.0 | ,, | | parisons may be attempted. In a 1959 study of over 2000 workers at the Maytag Company plant in Newton, Iowa (population 15,000), the median distance was about seven or eight miles, I much below that for the fiber plant workers. Although each laborshed embraces a largely rural area, the farm wages are lower and the alternate job opportunities are more limited in North Carolina; perhaps this partially explains greater commuting distances in North Carolina. The commuting habits of Kaiser Aluminum workers at the new Ravenswood, West Virginia (pop. 1175 at time of plant establishment in 1956), plant were analyzed in a 1957 investigation. This was a "depressed" and largely rural area where agricultural incomes were low and "well-paying" industrial jobs were as highly sought after as those with the fiber plant in this study. One year after the plant's opening, aluminum workers traveled a median one-way distance of about 20 miles, 12 or about half again as far as fiber plant workers. But many of the aluminum employees ¹¹ C. A. Peterson: An Iowa Commuting Pattern and Labor Market Areas in General (Bureau of Labor and Management, State University of Iowa, Iowa City, 1961), p. 1. ¹³ Labor Supply and Mobility in a Newly Industrialized Area (Bulletin 1261, U.S. Dept. Labor, Bureau of Labor Statistics, Washington, 1900), p. 21. subsequently moved closer to the plant. In comparing fiber plant commuting with that observed in the Kaiser study, it is appropriate to consider the commuting distances of fiber plant workers when they first obtained employment. Questionnaire data indicate that 260, or nearly one-fourth, of the fiber plant workers have moved closer to the plant since commencing their employment: they originally commuted an average of 28.8 miles one-way, compared with the present 8.4 mile average. This would seem to indicate that the median distance of fiber plant workers when first hired was comparable to that of the West Virginia aluminum workers shortly after their hire by Kaiser, Both plants, in similar "low-income" environments, initially attracted commuters from exceptionally wide areas. A 1948 survey of commuting at a spinning mill on the South Carolina piedmont showed a median one-way distance of six miles, 3 only slightly greater than that for the shirt factory. While the South Carolina plant is in a more rural setting, the rather similarly-low median commuting ranges probably stems from the fact that both are in the despite live low farm any large sizeable di DELIM In the n few attem limit accu market ar delimited, pear as po they are dr political be a proper de a necessary be conceive ately evide such a regic lap, particu mediate be' which are often happe (Fig. 4), tl entirely wi shed. They mutually 6 other hand thought of always as or by degree (2) commo. those of oth. The outling region can use of isoling other modal will be a see ("isocoms") resent compared to the control of the control of the compass t ¹² J. M. Steep and J. S. Plaxico: The Labor Supply of a Rural Industry (South Carolina Agr. Experiment Station, Bulletin 376, Columbia, 1948), p. 21. ### Cumulative per cent 17.9 59.9 77.6 90.8 98.8 99.5 100.0 o the plant. commuting aiser study. r the comint workers uployment. that 260, fiber plant o the plant iplovment: in average pared with This would iedian diswhen first at of the ers shortly th plants, ronments. from ex- ting at a Carolina one-way slightly t factory, ant is in ther simg ranges that both The Labor Carolina 6, Columare in the "low-wage" category. Thus, despite limited job opportunities and low farm wages, neither plant attracted any large number of persons living a sizeable distance from the plant. #### DELIMITING THE LABOR-SHEDS In the majority of commuting studies few attempts have been made to delimit accurately labor-sheds or labor market areas. Where they have been delimited, their boundaries usually appear as perfectly concentric circles, or they are drawn to coincide with existing political boundaries. To the geographer, a proper delimitation would seem to be a necessary step if the labor-shed is to be conceived as a region. But immediately evident are several obstacles to such a regionalization. Labor-sheds overlap, particularly in those zones intermediate between two plants or "nodes" which are attracting labor. It may often happen, as it does in this study (Fig. 4), that one labor-shed may lie entirely within another, larger laborshed. They cannot be conceived as mutually exclusive entities. On the other hand, the labor-shed can be : thought of as a distinct region, but always as one whose limits: (1) diminish by degree rather than abruptly and (2) commonly overlap or encompass those of other labor-sheds. The outlines of such a "diminishing" region can be shown on maps by the use of isolines. Around each factory or other nodal point attracting workers will be a series of commuting isolines ("isocoms"). These isolines can represent commuting mileage or time intervals (e.g., an isoline for every additional five miles of commuting distance). Each isoline can be translated into a line indicating the cumulative percentage of commuters contained within that line (e.g., the 25-mile isoline may encompass 75 per cent of the commuters, and be labeled either way). There is an absolute outer limit for any existing labor-shed, the isoline which includes 100 per cent of the commuters, However, a mere handful of persons commuting unusual distances can cause this outer limit to lie far beyond what might be termed the "effective limit" of the labor-shed. This raises the question of what constitutes such an "effective limit" in terms of the percentage of commuters included. There is no established norm, and any decision is presumably subjective. A reasonable limit might be the isoline embracing the nearest 90 per cent of the workers (Fig. 4). Commuting isoline maps were prepared for the fiber plant and shirt factory labor-sheds (Figs. 5, 6, and 7). The data for constructing the maps were obtained from the questionnaires which, in addition to asking each worker his one-way commuting mileage
and time, also requested each person commuting over 3 miles to locate his home on a map included in the questionnaire (Fig. 2). About 87 per cent of the fiber plant workers and 98 per cent of those at the shirt factory who returned questionnaires fully complied with this request. With this information it was possible to plot the approximate place of residence of 926 fiber plant and 719 shirt factory workers. Next to each place of residence on the map were recorded the mileage and minutes indicated on the questionnaire. This provided the control necessary to construct the commuting isolines, Intervals of five miles and ten minutes were chosen arbitrarily. The isolines are identified not only in terms of the miles or minutes from the plant, but also in terms of the percentage of all commuters contained within each isoline. Another approach, not emploved here, would be to select those distance isolines which would indicate the percentage of commuters enclosed at regular intervals (e.g., 30 per cent, 40 per cent, etc.). . The commuting mileage isoline maps for the two plants (Figs. 5 and 6) both show the influence of the existing road network orientation. Isolines extend farthest out along major radial roads in typical "spiderweb" fashion. The -fiber plant isolines appear rather elliptical in shape with a northeast-southwest orientation. This apparently reflects the position of the fiber plant on a main northeast-southwest road and the absence of a major east-west road in the immediate vicinity of the e plant. The shirt factory isolines are more nearly circular because of the many roads radiating out from Kinston in all directions. In neither case are there any major distortions in the shapes of isolines because of the lack of through roads in any area. The shirt factory labor-shed is contained entirely within the fiber plant labor-shed, an observation noted earlier in connection with Figure 4. The fiber plant labor-shed was extended to the 45-mile isoline. which encloses 97 per cent of the commuters. For the shirt factory, it was only necessary to extend the labor-shed to the 30-mile isoline to embrace 99 per cent of the workers. A commuting time isoline map was prepared for the fiber plant labor-shed (Fig. 7) for the purpose of comparing time isolines with those based on mileage. The commuting time isolines appear more irregular than do the mileage ones. They extend farther out along main roads, indicative of the higher speeds possible on major arteries. Nevertheless, the 60-minute isoline very roughly corresponds with the 45-mile isoline, which is consistent with the regression analysis. There does not appear to be any clear-cut advantage in using isolines based on time rather than on miles; the added difficulty of obtaining data on commuting time in itself seems to recommend the use of isolines based on mileage. The delimitation of labor-sheds in terms of commuting isolines can be objected to on the grounds that the isolines do not necessarily identify the areas of densest commuter origins. For example, Figures 4 and 6 tend to give different impressions of the distribution of shirt factory commuters. As is clear in Figure 6, a much larger number of shirt workers originates from the lowerincome areas south of Kinston than from the north; the labor-shed shown in Figure 4, delimited to include the nearest 90 per cent of commuters, includes areas north of Kinston, where few workers reside, and excludes districts south of Kinston (e.g., around Beulaville), where significant numbers of them live. A case can be made for rather arbitrarily positioning the outer limit of the labor-shed so as to include all areas of denser commuter origins and then drawing in just those isolines wholly or in part within the labor-shed. # Wages as a Factor Influencing Commuting A comparison of the fiber plant and shirt factory labor-sheds clearly suggests that "higher wage" workers are more willing to travel farther and therefore give up more of their "free" time. Presumably, everyone attaches some value to his time¹⁴ and is reasonably aware of the full cost of driving and maintaining an automobile. Thus, one could assume that a more highly-paid worker is in a better position to bear the additional expenditures of ¹⁾ For a discussion of this matter, see L. K. Loewenstein: The Spatial Distribution of Residences and Work Places in Urban Areas (Dept. of City Planning, Univ. of Pennsylvania, Philadelphia, 1962), pp. 4i-j (mimeo.). time and mon have studied cided differen relationship } journey-to-wo time rather difficulty of ing time in the use of or-sheds in es can be s that the dentify the origins. For and to give distribution As is clear number of the loweriston than hed shown nclude the nuters, inon, where ludes disg., around numbers made for the outer to include er origins se isolines ibor-shed. ENCING plant and arly sugrkers are ther and ir "free" attaches s reasonf driving le. Thus, e highlysition to tures of see L. K. a of Resinas (Dept. asylvania, Fig. 5. time and money. Yet among those who have studied commuting there are decided differences of opinion as to the relationship between wages and the journey-to-work.¹⁵ Some analysts sug- gest that there is no relationship be- ¹⁵ These differences were noted by James H. Thompson: Labor Market Areas for Manufacturing Plants in West Virginia (Bureau of Business Research, West Virginia Univ., Morgantown, 1955), p. 23. tween the two factors, and one analyst, C. A. Peterson, in a study of commuting in Iowa, found data which suggested that there was an inverse relationship between the two factors; i.e., more-distant commuters received, on the average, a lower wage than those living closer to the plant.¹⁶ An examination of the fiber plant data alone indicates the lack of a direct link between wages and commuting distance. A scatter diagram with wages plotted against distance, drawn from a random sample of 100 fiber plant questionnaires, showed no discernible trend. The fiber plant data were then arranged to show the average wage of workers in each commuting zone (Table V). To make certain that a possible relationship was not obscured by differences based on the sex of workers, the data were also arranged by sex. The only conclusion that can be drawn from this table is that there is no correlation whatsoever between wages and distance within the fiber plant group. Another factor—the length of service of workers-was examined on the theory that it might be responsible for obscuring the link between wages and distance. A slightly higher percentage of long-distance commuters are younger, newly-hired workers (Table VI), and their average wage is below that for the group as a whole. However, a sample inspection indicated that even with this latter factor considered, there is still an apparent lack of connection between wages and distance within the fiber plant group. It would be a mistake, however, to conclude from the above that wages and commuting distance are completely unrelated variables. It is true that within the fiber plant group there is no evident connection, but one has only to examine the commuting habits of the shirt factory workers for evidence that lower-paid workers in the same region do not commute nearly as far (Tables III and IV). The fact that a much higher percentage of shirt factory workers are female than male is apparently not a factor here; as shown in Table VI, there are no significant differences between male and female commuting in this area. Perhaps the critical element is whether wages are above or below those prevailing in the region being examined. The overall nonagricultural wage in the ten-county study area in 1964 was about 865 per 18 Peterson, op. cit., pp. 8-9. TABLE V AVERAGE WEEKLY WAGE OF FIBER PLANT WORNERS® BY COMMUTING ZONES AND BY SEN | Zone | Miles | All c | ommuters | Male commuters | | Female | commuters | |------|-----------|-------|----------|----------------|----------|--------|-----------| | | | No. | Wages | No. | Wages | No. | Wages | | 1, | 0-4 | 105 | \$112.89 | 89 | \$115.91 | 16 | \$96.06 | | 2 | 5-9 | 245 | 107.60 | 195 | 110.68 | 50 | 95.60 | | 3 | 10~14 | 198 | 110.75 | 172 | 112.72 | 26 | 97.69 | | 4 | 15-19 | 5 81 | 106.20 | 70 | 108.07 | 11 | 94.27 | | 5 | 20-24 | 112 | 108.96 | 96 | 111.09 | 16 | 96,19 | | 6 | 25-29 | 56 | 169.34 | 47 | 113.11 | ŋ | . 89.67 | | 7 | 30-34 | 51 | 104.71 | 36 | 107.44 | 15 | 98.13 | | 8, | 35-39 | . 76 | 110.86 | 50 | 114.97 | 17 | 96.59 | | 9 | 40-44 | 52 | 107.87 | 4.3 | 111.35 | 9 | 91.22 | | 0 | 45 & over | 32 | 110.25 | 29 | 111.69 | 3 | 96,33 | [&]quot;The size of this population (1008) is somewhat smaller than in some other tables due to the necessity for eliminating crew questionnaires where the desired combination of data required for this table were not wholly provided. week, compared plant and \$52 at sibly, differences failed to show up sample because A slightly higher tance commuters d workers (Table e wage is below whole. However, icated that even considered, there k of connection cance within the ke, however, to ove that wages are completely is true that group there is ut one has only iting habits of rs for evidence s in the same nearly as far he fact that a shirt factory n male is ape; as shown in no significant e and female . Perhaps the ier wages are evailing in the ⊿ie overall none ten-county ibout \$65 per | rale | commuters | |------|-------------------------| | | Wages | | 4 | \$96,06
95,60 | | | 97.69
94.27
96.19 | | | 89.67
98.13 | | | 96.59
91.22
96.33 | | 4 | 70, 33 | ty for eliminating Fig. 6. week, compared with \$109 at the fiber plant and \$52 at the shirt factory. Possibly, differences in commuting habits failed to show up within the fiber plant sample because virtually all fiber work- ers receive a wage above the ten-county average. The same was true of the shirt factory where the great majority of workers are paid a wage below the regional average. This
suggests that there is a positive relationship between wages and commuting, and that when a plant offers wages appreciably above those prevailing in a region, one can expect, cetera paribus, workers to exhibit a greater willingness to commute long distances. This is consistent with findings in the study of Kaiser aluminum workers at Ravenswood, West Virginia.¹⁷ # OTHER PERSONAL FACTORS INFLUENCING COMMUTING Personal factors, those that vary with the individual worker, which may influence and thus help to explain a commuting pattern include, in addition to wages, the age, sex, and length of service of workers. Data on the latter three factors are shown by commuting zone in Table VI. The average age of workers declines somewhat with increased commuting distance; workers living close to the plant tend to average four years older than those doing considerable commuting. This is about equally true for both plants. Similarly, the average length of service for both groups diminishes with increased commuting distance, particularly in the case of the shirt factory. These findings are consistent with those of most other analysts who have noted a greater willingness (or necessity) of younger persons to commute and a lower seniority level of the average longer-distance commuter. These two observed facts are probably related; a younger person takes a job, commutes a considerable distance, and after several years when he commands a higher wage, decides to buy a house closer to the plant. Testifying to this is the fact that about one-fourth of the present fiber plant workers and one-sixth of those at the shirt factory have moved closer to the plant since taking their present job. 17 Labor Supply and Mobility, op. cit., pp. Sex does not seem to be a factor in explaining commuting; for both plants the commuting habits of women are about the same as for those of the men. As Peterson noted in his lowa study, "the lack of any consistent relationship between sex and commuting behavior is the only safe generalization that can be made." 18 # Construction of Probability Models A means of investigating the significance of two geographic variablespopulation and distance - is provided by constructing gravity probability models. The gravity concept holds that the potential interaction between two points or areas is directly proportional to their populations and inversely proportional to the distance between them. In the case of commuting, the gravity idea can be conceived as suggesting that an individual plant (or group of plants) attracts commuters from surrounding areas in direct proportion to the population of the area and in inverse proportion to the distance between the area and the plant. As is evident in Figures 5, 6 and 7, the density of commuter origins is not constant; nor does it diminish at a constant rate with increased distance from the plant. It is here assumed that much of this "unevenness" can be attributed to differences in distance and the spatial arrangement of population. Employing the gravity idea, a series of probability models was constructed, experimenting with various exponents of distance (measured in miles and minutes) in an attempt to establish a model which most closely approximated the actual distribution of commuters. It is reasoned that such a model provides a basis for judging the influence of population and distance 15 Peterson, op. cit., p. 11. | 1, | 0-4 | | |-----|--------------|--| | 2 | 5-9 | | | 3 | 10-14 | | | 4 | 15-19 | | | 5 | 20-24 | | | 6 | 25-29 | | | 7 | 30-34 | | | | | | | 8 | 35-39 | | | 9 | 40-44 | | | 10, | 45 & over | | All Zones..... Miles Zone on commuting, gest a means for extent of a labe new industrial Probability of the fiber plant commuting padistances and provides a more appraising the tion and distant commuting that more-restricted pattern. Before const was necessary to on methods and models a direct was postulated commuters from population; dist are confined to the effect of d Second, the exiships was used a ing the ten-cou availability of I township. Thir ¹⁹ A similar appa Taaffe, and other to Work, A Geogr ton, Ill., 1963), pp. e a factor in or both plants of women are those of the in his lowa ny consistent id commuting generalization ### DRABILITY ing the sig-: variables provided by ility models. is that the n two points onal to their proportional iem. In the ravity idea esting that p of plants) surrounding the popurse proporn the area in Figures commuter or does it with inlant. It is s"unevendifferences rangement ie gravity iodels was th various usured in tempt to st closely ■bution of it such a lging the distance TABLE VI Age, sen, and length of service of workers, by commuting zones | Zone Miles | 177 | Aterage age | | Sex, fiber plant | | | Sex, shirt factory | | | Average length of service (months) | | |------------|----------------|------------------|------|------------------|--------------------|------|--------------------|--------------------|----------------|------------------------------------|-----| | | Fiber
plant | Shirt
factory | Male | Female | Per cent
female | Male | Female | Per cent
female | Fiber
plant | Shirt
factory | | | 1 | 0-4 | 34.2 | 33.9 | 96 | 17 | 15.0 | 44 | 391 | 80.9 | 110 | 95 | | 2, | 5-9 | 33.1 | 32.9 | 205 | 53 | 20.5 | 8 | 63 | 88.7 | 106 | 89 | | 3 | 10-14 | 32.5 | 30.8 | 174 | 27 | 13.8 | 4 | 77 | 95.1 | 98 | 63 | | 4 | 15-19 | 29.8 | 30.8 | 71 | 11 | 13.4 | 7 | 65 | 90.3 | 74 | 53 | | 5 | 20-24 | 31.6 | 29.0 | 101 | 16 | 13.7 | 4 | 36 | 90.0 | 97 | 31 | | 6 | 25-29 | 31.6 | 28.4 | 52 | 9 | 14.8 | 3 | 22 | 88.0 | 92 | 44 | | 7 | 30-34 | 30.5 | 29.1 | 40 | 15 | 27.3 | 1 | 7 | 87.5 | 89 | 79 | | 8 | 35-39 | 30.0 | 22.0 | 61 | 17 | 21,8 | ١ | 1 1 | 100.0 | 95 | 18 | | 9 | 10-44 | 30.4 | 28.0 | 45 | 9 | 16.7 |] | l i | 100.0 | 89 | 144 | | 10 | 45 & over | 30.0 | | 30 | 3 | 9.1 | | | | 90 | | | All Zones | | 32.0 | 32.7 | 875 | 177 | 16.8 | 71 | 663 | 90.3 | 98 | 82 | on commuting.¹⁹ Such models also suggest a means for estimating the potential extent of a labor-shed about a proposed new industrial facility. Probability models are presented for the fiber plant only. The fiber plant commuting pattern, involving greater distances and a much larger area, provides a more satisfactory basis for appraising the significance of population and distance as factors influencing commuting than does the geographically more-restricted shirt factory commuting pattern. Before constructing the models it was necessary to make several decisions on methods and procedure. First, in all models a direct positive relationship was postulated between the number of commuters from an area and that area's population; distinctions between models are confined to varying expressions of the effect of distance on commuting. Second, the existing network of townships was used as the basis for regionalizing the ten-county area because of the availability of population data for each township. Third, the 1960 population DA similar approach was used by Edward J. Taaffe, and others: The Peripheral Journey to Work, A Geographic Consideration (Evanston, 1ll., 1963), pp. 36ff. data, available on a township basis, were used despite a four-year time difference; estimates of 1964 county populations fail to show any significantly large shifts in population within the study area since 1960. Fourth, the area under consideration was limited to those 74 townships shown to be wholly or largely within a one-hour commuting distance of the fiber plant (Fig. 7). One-hour's distance was selected because it includes almost all commuters and appears to represent a distance beyond which few workers would consider commuting. As noted earlier, the one-hour isoline corresponds rather closely with the 45-mile isoline on Figure 5. Fifth, the approximate population center-of-gravity of each township was used to measure the distance between a township and the plant; distances were read off the commuting isoline maps, in miles or minutes (Figs. 5 and 7). Sixth, in indicating the distribution of commuters suggested by a model, each of the 74 townships is placed in an appropriate distance zone for purposes of simplicity and the . data presented by such zones; zones were established over intervals of five miles and six minutes, respectively. Six minutes was chosen as the time interval Fig. 7. (rather than ten as in Figure 7) only because a regression analysis indicated a commuting time of 1.25 minutes per additional mile; 1.25 times 5 miles (rather than ten as in Figure 7) only equals 6.25 minutes, with six being the because a regression analysis indicated closest round number. a commuting time of 1.25 minutes per — In the first series of seven models additional mile; 1.25 times 5 miles distance is measured in miles. The distribution in each of distance zo distributions ages of the each model association the degree of distribution and the acomuters by distribution Model on retards commute mileage. T formulation c = p/d with of commuters 20 In this stuc association is us distribution of c ability model w distance zones, c total. Percentag distribution are other, and the si differences divid from one. $\Delta H = c$ somewhere between a complete lack one indicates a cussion of this Methods of Re 1960), pp. 253, Economic Geogra pp. 595-597. | Zone | Miles | |------------|----------| | 1 | 0-4 | | 2,,,,, | 5-9 | | 3 | 10-14 | | 4 | 15-19 | | 5 | 20~24 | | 6 | 25-29 | | ī . | 30-34 | | 8 | 35-39 | | 9 | 40~44 | | 10 | 45 & ove | | Total | | distribution of commuters suggested in each of these models is shown by distance zones in Table VII. The distributions are expressed as percentages of the 74-township total. For each model the coefficient of geographic association²⁰ is calculated, measuring the degree of coincidence between the distribution suggested by the model and the actual distribution of commuters by distance zones. Model one assumes that distance retards commuting in
direct proportion to mileage. This is the most elementary formulation of the gravity concept; c = p/d with c representing the number of commuters, p the population of the n this study the coefficient of geographic association is used to compare the geographic distribution of commuters suggested in a probability model with the actual distribution by distance zones, expressed in percentages of the total. Percentage values for each zone in one distribution are subtracted from values in the other, and the sum of the positive (or negative) differences divided by 100 is then subtracted from one. All coefficients will have a value somewhere between zero and one; zero signifies a complete lack of association, and a value of one indicates a perfect association. For a discussion of this measure see Walter Isard: Methods of Regional Analysis (New York, 1960), pp. 253, 255; or John W. Alexander: Economic Geography (Englewood Cliffs, 1963), pp. 595-597. township under consideration, and d the distance in miles from the township's population center-of-gravity to the plant (read from Fig. 5). Model one suggests that there are more commuters from the more distant zones and somewhat fewer from the nearer zones than is actually the case. In other words, the retarding effect of distance is understated beyond 25 miles, and overstated closer in. Nevertheless, a reasonably high (.851) coefficient of geographic association is attained. In the second model the frictional effect of distance in discouraging commuting is increased by squaring the distance. This formulation, $c = p d^2$, is rather commonly employed by those constructing gravity models. In this instance the negative influence of distance is grossly exaggerated, and the coefficient of geographic association is a poor .728. In all but the two closest zones the suggested number of commuters is understated. Model three seeks a better fit by attempting to combine the approaches in the two previous models. Since model one's suggested commuters in the closer zones were somewhat below but close TABLE VII DISTRIBUTION OF FIBER PLANT COMMUTERS SUGGESTED BY PROBABILITY MODELS (Distance measured in miles) | Zone | Miles | Actual
distri-
bution
Per cent | Model 1
Per cent | Model 2
Per cent | Model 3
Per cent | Model 4
Per cent | Model 5
Per cent | Model 6
Per cent | Model 7
Per cent | |---|-----------|---|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | 1 | 0-4 | 7.56 | 6.12 | 24.74 | 9.30 | 1.64 | 1.69 | 7.60 | 7.63 | | 2 | 5-9 | 31.86 | 27.52 | 41.96 | 41.85 | 19.69 | 20.29 | 31.52 | 34.37 | | 3 | 10-14 | 15.77 | 8.62 | 8.78 | 13.11 | 9.27 | 9.55 | 9.88 | 10.77 | | 4 | 15-19 | 7.57 | 5.76 | 4.05 | 8.79 | 8.95 | 9.29 | 6,63 | 7.21 | | 5 | 20-24 | 13.29 | 13.13 | 7,17 | 17.12 | 21.18 | 20.33 | 13.73 | 13.73 | | 6 | 25-29 | 2.59 | 3.83 | 1.81 | 2.78 | 5.34 | 4.91 | 3.60 | 3.31 | | 7 | 30-34 | 3.79 | 6.17 | 2,46 | 2,20 | 7.27 | 6,79 | 5.30 | 4.60 | | 8 | 35-39 | 11.22 | 16.96 | 5.68 | 3.27 | 16.74 | 16.53 | 13.45 | 11.18 | | 9 | 40-44 | 4.54 | 5.42 | 1.61 | . 75 | 4.76 | 4.97 | 4.13 | 3.36 | | 10 | 45 & over | 1.82 | 6.48 | 1.75 | .78 | 5.17 | 5.69 | 4.79 | 3.85 | | Total | | 100.01 | 100.01 | 100.01 | 99,95 | 100.01 | 100.04 | 100.03 | 100.01 | | Coefficient of geographic associa-
tion with actual distribution | | .851 | .728 | . 8.10 | .754 | . 763 | .919 | .914 | | x being the ven models miles. The to the actual, model three assumes that the number of commuters decreases directly with distance up to a range of 20 miles; beyond that the distance is squared just as in model two. Overall, the result is an improvement over model two, with a .830 coefficient of geographic association, but the number of commuters in the more distant zones is even more severely understated. In models four and five, a different approach is used; a frictionless zone is assumed. It is reasoned that since the average fiber plant worker drives over 17 miles, and since over one-fourth of all workers drive 20 miles or more. perhaps distance seriously discourages commuting only beyond a certain point. Twenty miles was selected, somewhat arbitrarily (but with the distribution in model one in mind), as the outer limit of this frictionless zone. In model four, calculations all distances over 20 miles are squared, and distances up to 20 miles all assigned a value of 400 (20 squared). In model five, distances over 20 are tripled, and distances up to 20 miles all assigned a value of 20. The suggested distribution of commuters by distance zones is about the same in both models; the number of short-distance commuters is badly understated, with the result that the suggested number of medium and longdistance commuters is generally too high. In this instance it appears that the assumption of a frictionless zone is inappropriate. Model six abandons any assumption that there is a frictionless zone or that distance discourages commuting proportional to some power (e.g., the square) of the mileage. At the same time, it is recognized that the retarding effect of distance is accelerated toward the outer margin of the labor-shed. In model six calculations, commuting is assumed to diminish directly with dis- tances up to 20 miles, and beyond that at a pace proportional to twice the mileage (e.g., a distance of 30 miles would be assigned a value of $20 + 10 \times 2 = 40$). Employing this approach, a quite favorable .919 coefficient of geographic association is obtained. Nevertheless, the proportion of longer-distance commuters was sufficiently overstated to warrant continued experimentation. Model seven utilizes the same approach as model six, but the frictional effect of distance beyond 20 miles is increased. Commuting is assumed to diminish directly with mileage up to 20 miles, and beyond that at a pace proportional to three times the mileage. In this case the suggested percentage of commuters from each mileage zone is close to the actual distribution, and a very favorable .934 coefficient of geographic association is realized. The restraining effect of mileage could be further restated in subsequent models and the coefficient of association probably improved somewhat, but the approximate significance of mileage would appear to be already evident. Another set of five models was constructed. These differ from the others in that distance is measured in terms of commuting time (Table VIII). It was reasoned that it might be possible to achieve a better fit using this distance measure, and, if so, it might suggest that time is a better measure of commuting distance than mileage. Models eight and nine, patterned after models one and two, employ the two most standard formulations of the gravity concept. In model eight distance is assumed to retard commuting in direct proportion to the number of minutes, and in model nine in direct relation to the square of the number of minutes involved. Model eight results are inferior to those of model one; the proportion of commuters beyond 35 Coefficient of actual distri *The "0-5" six minutes to miles is the state of the superior supe Model model sev assumed to as the nu (as sugger beyond the number did not according to the coefficient would be assumed to the coefficient to the coefficient would be assumed to the coefficient Model on model frictional nine the up to 18 eleven discommutin minutes a the rate o of 18 (e.g. a value The resul and that vice the ³⁰ miles + 10 x 2 oach, a of geo-Neverlistance erstated atation. me apictional niles is ned to up to a pace nileage. entage e zone n, and ent of d. The uld be models probne apwould s conothers terms 1). It ossible stance iggest com- erned y the is of eight uting imber direct ær of esults ; the 35 TABLE VIII DISTRIBUTION OF FIBER PLANT COMMUTERS SUGGESTED BY PROBABILITY MODILES (Distance measured in minutes) | Zone | Minutes* | Actual
distribution
Per cent | Model 8
Per cent | Model 9
Per cent | Model 10
Per cent | Model 11
Per cent | Model 12
Per cent | |-------|-----------------|------------------------------------|---------------------|---------------------|----------------------|----------------------|----------------------| | 1 | 6-11 | 7.56 | 3,37 | 10.39 | 4.10 | 9.31 | 35.63 | | 2 | 12-17 | 30.35 | 21.28 | 35.54 | 25.85 | 58.73 | 33.42 | | 3 | 18-23 | 12.74 | 6.25 | 8.53 | 7.59 | 14.78 | 6.61 | | 4 | 24-29 | 9.30 | 6.03 | 6.24 | 7.31 | 4.91 | 3.99 | | 5 | 30-35 | 8.64 | 7.42 | 6.53 | 9.01 | 3.35 | 3.86 | | 6 | 36-41 | 9.94 | 12.59 | 9.33 | 13.78 | 3.38 | 5.01 | | 7 | 42-47 | 4.32 | 7.07 | 4.31 | 5.95 | 1.19 | 2,22 | | 8 | 48-53 | 10.37 | 20.60 | 11.76 | 15.85 | 2.80 | 5.72 | | 9 | 54-60 | 6.79 | 15.40 | 7.34 | 10.53 | 1.57 | 3.54 | | Total | | 100.01 | 100.01 | 99.97 | 99.97 | 100.02 | 100.00 | | | of geographic a | ssociation with | .758 | .900 | . 849 | .678 | . 689 | ^{*}The "0-5" minute zone is considered nonexistent. As indicated by the regression line in Figure 3, it requires about six minutes to travel zero miles; this is presumably a measure of terminal time. miles is badly overstated, and within 35 miles understated. By contrast, the results in model nine are immensely superior to those of the unsuccessful model two. While the values for the two closest zones are significantly high, a favorable (.900) coefficient of geographic association is attained. Model ten uses the highly effective model seven as a guide; distance is assumed to restrain commuting directly as the number of minutes up to 35 (as suggested by model eight), and beyond that at the rate of three times the number of minutes. Model ten did not achieve model seven's measure of success, and recorded a fair (.849) coefficient of geographic association. Model eleven attempts to improve on model nine by
adjusting the assumed frictional effect of distance. In model nine the suggested values were high up to 18 minutes. Therefore, in model eleven distance is presumed to retard commuting directly as the number of minutes up to 18, and beyond that at the rate of the square of values in excess of 18 (e.g., 25 minutes would be assigned a value of 18 + 7 squared, or 67). The results provide an example of how a seemingly minor adjustment can severely change suggested distributions; model eleven registers a very poor (.678) coefficient of geographic association. One final model was constructed. In the previously discussed regression anaivsis comparing commuting mileage with minutes, a "terminal time" of about six minutes was indicated. Perhaps a superior measure of distance would be attained by subtracting six minutes from all indicated commuting times, thus specifying the time elapsed while actually travelling. Otherwise, model twelve is similar to the successful model nine, i.e., commuting is assumed to be discouraged in direct proportion to the square of the distance. The results in this model are disappointing; the very poor (.689) coefficient of geographic association suggests that the subtraction of "terminal time" is unwarranted. Despite the failure of attempts to improve on model nine, the best in this group, it must be assumed that continued experimentation could in all likelihood produce a somewhat closer fit. The construction of the probability models demonstrates that geographic distributions similar to the actual ones can be approximated, lending some credence to the assumption that the number of commuters will vary directly with population and inversely with distance from a specified point. The significance of an irregular population distribution as a factor contributing to an uneven geography of commuter origins is evident in the models. Less obvious is the specific impact of distance on commuting. The fact that a very high fit was attained in model seven suggests that in this area distance does exert a greater restraining influence beyond about twenty miles, perhaps proportional to thrice the mileage bevond that point. As to whether the number of miles or the number of minutes is the better measure of distance, there is little evidence here to support one over the other, even though a somewhat better fit was obtained using mileage. # THE CONSIDERATION OF OTHER GEOGRAPHIC VARIABLES Population and distance are not the only geographic variables which probably have a bearing on the spatial pattern of commuter origins. This would partially explain the difficulty in constructing models which consider only these two variables. When probability model distributions were compared with actual distributions, discrepancies were noted. For example, a particular distance zone may be supposed to generate a specified number of commuters according to some model, but in fact provides only a few. Perhaps some other factors are causing the distance zone to supply fewer commuters than would be expected on the basis of the population-distance relationship built into the model. As can be seen in Table I, there are sizable differences among labor-shed counties in such matters as rates of population growth, urbanization, intensity of agricultural and manufacturing employment, per capita income, wages, levels of unemployment, and density of paved roads. One might consider other factors, such as levels of education, land tenancy, and farm abandonment. All of these factors and many more may have some influence on the tendency or willingness of workers to commute. As a means of observing the possible significance of some of the variables noted above, Table IX was prepared, comparing the actual number of fiber plant commuters from each of nine counties with the number suggested in probability model seven, the model achieving the highest coefficient of geographic association. Model seven values are treated as the "expected norm," and the percentage deviation of the actual number from that expected in model seven is indicated. The southern counties provide many more commuters than model seven suggests, and the northwestern counties quite the reverse. The deviations were compared with the county data presented in Table I. Clearly evident is a reasonably high correlation between these deviations (actual from expected commuters) and at least three geographic variables: per capita income, population density, and intensity of agricultural employment. To facilitate regional comparisons, for each of the four variables the nine counties are ranked, one through nine (Table 1X). In the case of agricultural employment, where the correlation is negative, the ranking is given in inverse order to maintain concordance. The similarity of the four rankings shown in Table IX is sufficient to suggest that these three geographic variables may have a significant effect on the commuting pattern of fiber plant workers. The moderately high rank correlation coefficients attained (±.57 to Counts* | CENTRAL COUNTIES | |-------------------| | Lenoir | | Pitt | | Greene | | NORTHWESTERN | | COUNTIES | | Wayne | | Wilson | | SOUTHERN COUNTIES | | Duplin | | Jones | | EASTERN COUNTIES | | Beaufort | | Craven | | | Spearman's rank corr +.73) would not for Crave inconsistency. study area cou a large milita Point Marine large numbers ing in part the capita income agricultural em The general pected number lower-income of stantiate the of that when a misses appreciating in a region workers to should be applied to commute lower for Duplin and I and IX suggestive differ a Further evit can be seen in Fig tion of shirt we the average incomany more work counties equidist Only those countie Rank among nine Derived from date about three times the area. Commuting isolines provide a promising means of delimiting labor market areas; this permits the labor-shed to be conceived as a region diminishing by degree rather than terminating abruptly at some arbitrarily-designated limit. Commuting isolines can be based on miles or minutes, but the additional effort required to obtain data on travel time in itself recommends the use of mileage in constructing isoline maps. As to the question of which is the better measure of commuting distance-miles or minutes —the evidence in this study, while inconclusive, does suggest that there is relatively little advantage in one over the other. Wages appear to be the primary factor explaining the acute differences in the two commuting patterns. Wages at the fiber plant are, like their commuting distances, much above the average for the state and the ten-county study area. Within the fiber plant group, there is no correlation between wages and distance, but the critical point here may be that almost all fiber plant workers receive a wage above the study-area average. The shirt factory workers, with a below-average wage, commute a distance somewhat under the state mean. The prevalence of female workers at the shirt factory does not explain the variance in distance, as there are no apparent differences in the commuting habits of men and women in this area. A firm considering a location in this or a similar district should compare its wage standards with those prevailing in the area before making estimates on the size of the labor-shed from which it can expect to draw labor. A series of probability models based on gravity concepts provided a useful method of appraising the importance of two geographic variables, population and distance. The positive relation between the irregular population distribution and the uneven geographic pattern of commuter origins is effectively indicated by the high degree of association between the distributions of commuters suggested by some models and the actual geographic distribution. The apparent significance of distance in retarding commuting in this section of eastern North Carolina was approximated through a lengthy process of experimentation with assorted valuations of distance in the probability models. Discrepancies between the actual distribution of commuters and those designated by the more successful models are possibly explained by spatial differences in other conditions. Districts generating more commuters than a model suggests tend to be areas with a high percentage of the labor force in agriculture, low per capita income, low population density, and little if any recent population growth. In the final analysis, an appraisal of any commuting pattern requires a consideration of a multitude of interrelated geographic variables. ## ACKNOWLEDGMENTS The kind cooperation of E. I. du Pont officials, and Sol Schechter of the Kinston Shirt Company, and the advice and help given by Hugh M. Raper, Lonnie Dill, and others of the Employment Security Commission of North Carolina are sincerely appreciated. **CAPITA** Dr. Loge ♥HE dist activities concentra ital city nodes. pattern to be exp Western country six Sovereign Stat particular, is hear distribution patte portance of variou intervention and tion in Australian of this paper are turing distribution city levels and to specialization of f veloped. Because the distribution, s. niques based on t facturing employee Manufacturing i states, New South and in the capital both respects its is more concentrat lation. Whereas N Victoria in 1961 65 per cent of the contained manufacturing jol tion in 1901, Vict ¹ See, for example, nomic Organisation of 1953); R. Vining: . Spatial Aspects of an Dev. and Coll. Change J. R. P. Friedman Economic Developm No. 3, 1956, pp. 213- and manucapita inmployment, One might as levels of and farm factors and e influence ingness of he possible variables prepared. r of fiber of nine suggested the model icient of el seven expected deviation expected southern mmuters and the reverse. ed with Table I. oly high viations rs) and iles: per - ty, and Dyment. ons, for e counnine nkings auggest riables on the workcorre-57 to -'ulturai tion is inverse TABLE
IX SOME GEOGRAPHIC VARIABLES FOSSIBLY RESPONSIBLE FOR DISCREPANCY REINVEN-MODEL SEVEN AND ACTUAL DISTRIBUTION OF FIBER PLANT COMMUTERS | County* | Number of
commuters
suggested
in Model 7 | Actual
number of
commuters | Percentage
deviation,
actual
from
suggested | Rank! de-
voition of
actual from
suggested
(negative
to positive) | Rank!
1962
per
capita
incomes | Rank/* 1960
population
density* | Runk's fer-
centage of 1906
Labor force in
agricultures
(inverse order) | |--------------------------|---|----------------------------------|---|--|---|---------------------------------------|---| | CENTRAL COUNTIES | | | | | | | | | Lenoir | 435 | 368 | -15 | 3 | 3 | 3 | 3 | | Pitt | 203 | 261 | +29 | 7 | 5 | 4 | 6 | | Greene | 56 | 57 | +2 | 5 | 6 | 6 | 9. | | Northwestern
Counties | | | | | | | | | Wayne | 88 | 73 | -17 | 2 | 4 | . 2 | 4 | | Wilson | 31 | 7 | -77 | l ı | 2 | 1 | 2 | | SOUTHERN COUNTIES | | Į. | 1 | ł | 1 | | | | Duplin | 19 | 51 | +168 | 9 | 8 | 7 . | 7 | | Jones | 13 | 23 | <u></u> +77 | 8 | 9 | 9 | 8 | | EASTERN COUNTIES | | | | ì | 1 | | } | | Beaufort | 19 | 19 | 0 | 4 | 7 | 8 | 5 | | Craven | 54 | 64 | +19 | 6 | 1 | 5 | 1 | Only those counties within a one-hour commuting distance (arbitrary cut-off point in probability models) are considered. Rank among nine counties here considered. · Derived from data in Table I. +.73) would be much higher were it not for Craven County's sizable rank inconsistency. Craven is unique among study area counties in that it possesses a large military installation (Cherry Point Marine Air Station) employing large numbers of civilians, thus explaining in part that county's higher per capita income and lower intensity of agricultural employment. The generation of greater than expected numbers of commuters from lower-income counties²¹ tends to substantiate the observation made earlier that when a manufacturing plant offers wages appreciably above those prevailing in a region, one can expect the workers to show a greater willingness to commute longer distances. The data for Duplin and Jones counties in Tables I and IX suggest that the greater the positive difference between a plant's ²¹ Further evidence of such a relationship can be seen in Figure 6 which shows the distribution of shirt workers. Duplin County, where the average income is particularly low, supplies many more workers than other higher-income counties equidistant from the factory. wages and those prevalent in an area, the greater the distance workers will be willing to travel. The counties with the highest percentage of the labor force in agriculture are also the counties with lower per capita incomes and stagnant or declining populations; such conditions are indicative of poor or declining agricultural opportunities and presumably stimulate commuting.²² ### SUMMARY The commuting pattern of the higher-wage fiber plant workers contrasts sharply with that of the lower-wage shirt factory employees. The former commute a mean distance of 17.5 miles each way, while the latter average 6.7 miles. Where the two labor-sheds are outlined to encompass the "nearest 90" per cent of the respective commuters, the fiber plant labor-shed covers ²² The greater tendency of workers to commute where agricultural conditions are poor was observed in upstate New York by Harold E. Conklin: The Rural-Urban Economy of the Elmira-Corning (N.Y.) Region, Journ. Land and Public Utility Economics, Vol. 20, 1944, p. 3. # Bringing Jobs to People: Does It Pay? by GENE F. SUMMERS and JEAN M. LANG This article was prepared by Gene F. Summers, Professor of Rural Sociology, University of Wisconsin-Madison, and Jean M. Lang, Editor and Science Writer, Institute for Environmental Studies, University of Wisconsin-Madison. It is based upon material in Gene F. Summers, Sharon Evans, Frank Clemente, Elwood M. Beck, Jr. and Jon Minkoff, Industrial Invasion of Nonmetropolitan America; Praeger, 1976. The University of Wisconsin Department of Rural Sociology issues a semi-annual list of "Publications in Print." Many of these deal with applied programs in Wisconsin, others with specific studies in community development and rural industrialization related to problems discussed in this article. For a copy of the publications list, write Gene Summers at the Department of Rural Sociology, 603 WARF Building, University of Wisconsin, Madison, Wisconsin, 53706. Over the last twenty-five years manufacturing industries have been moving out of the city and into the countryside at an ever increasing rate. Between 1960 and 1970 manufacturing employment in nonmetropolitan areas grew by 22 percent while manufacturing jobs in metropolitan areas grew only four percent. Industries have had their own reasons for expanding into rural areas: lower local taxes, cheaper land and water costs, and a good supply of laborers, presumably steeped in the American work ethic. Industry's interest in rural factory sites has been strongly encouraged by the eager solicitations of potential host communities and by federal policy. For example, nonmetropolitan location of industry has been an explicit goal of recent federal anti-poverty legislation including the Economic Opportunity Act of 1964, the Public Works Act of 1965, the Appalachian Regional Act of 1965, and the Rural Development Act of 1972. The apparent logic behind this interventionist strategy is fairly simple. Both rural poverty and urban socioeconomic problems are seen as products of a geographic mismatch of labor supply and demand. The mismatch has been caused by a decline in economic opportunities in rural areas and an increase of the same opportunities in urban areas. One means of correcting this imbalance is to stimulate the rural economy, thereby increasing job opportunities and halting the exodus of rural labor to the city. An industry, particularly a manufacturing plant that generates a direct flow of money to the local community, is considered an ideal stimulus for the rural economy. Indus- This aerial photo shows the village of Hennepin, Illinois, and the Putnam County Court House (center, right)—the oldest in continuous use in Illinois—with a new Jones & Laughlin Steel plant in the background. The plant produces cold rolled and galvanized steel sheets. This, and the photo on page 10 are courtesy of the Jones & Laughlin Steel Corporation. try's presence is expected to spark income growth, population redistribution, housing improvements, better community services, and other amenities. It is exactly these presumed benefits that make large industry so attractive to the small community. But are these benefits being delivered? Do rural communities really profit from industry's arrival, or are there undesirable side effects? In a study sponsored by the Economic Development Administration, U.S. Department of Commerce, a team of sociologists attempted to answer these questions.¹ Our group reviewed almost 100 case studies of the impacts of industrial location on nonmetropolitan communities. The case studies encompassed more than 700 manufacturing plants in 245 locations and 34 states. The predominant industries were metals production and fabrication, chemicals manufacture and wearing apparel assembly. The factories ranged in size from those with less than ten workers to plants with over 4,000 employees. The majority of factories were located in the Midwest and the South. Although the studies included a great diversity of industries and locations, they did not constitute a representative sample and should be judged accordingly. #### Employment · Direct Hiring There is no question that industry brings new jobs to a community. Some of the jobs come from direct hiring of plant personnel, and others follow indirectly as the new industry stimulates growth in existing sectors of the local economy. The important question is who gets the new jobs. Our study revealed that new factories generally did not hire the local unemployed. In the majority of cases only a small portion of the jobs were filled by local disadvantaged or unemployed persons (Table 1). There was also considerable evidence that nonwhites were underrepresented in rural factories. There appeared to be two primary reasons why local poor, minorities and disadvantaged were infrequently hired: First, the labor pool for a rural industry extends well beyond the area of the host community. Long distance commuters are not uncommon, and the new factory generates considerable in-migration and settlement of workers from the surrounding area (Table 2). From this widespread labor force, industry selects the better educated, more highly skilled worker with the "right" racial heritage. The local unskilled resident often has little hope of qualifying. Second, many jobs are taken by newcomers to the labor force, primarily women. Many rural industries, particularly textiles and electronics assembly, prefer female labor. Thus previously nonworking women fill the factory jobs. This increases the number of people in the labor force but does not decrease the number of unemployed workers in the community. Ironically, it is possible for new industry to reduce unemployment and poverty in a community without providing a Zoning laws prohibit subdividing farms in this Wisconsin township so developers get around this rule by creating 5-acre "farmettes." University of Wisconsin photograph by Jim Larison. # Table I Percentage of New Plant Workers Previously Unemployed | Study Site | Industry | No. of
Jobs | % of Jobs
Filled by
Previously
Unemployed | |--------------------
---|----------------|--| | Linton, Ind. | Aluminum chairs | 100 | 25.0% | | Wynne, Ark. | Apparel; copper tubing | 1,900 | 11.2 | | Rochester, Minn. | Business machines | 1,862 | 14.0 | | Ravenswood, W. Va. | Aluminum | 894 | 11.0 | | E. Oklahoma Comm. | 12 plants (mixed) | 554 | 7.7 | | A.R.A. Area Survey | 33 plants (mixed) | 1,262 | 43.0 | | Mt. Airy, N. C. | Appliances | 435 | 8.0 | | Jefferson, la. | Stamping, athletic equipment | 369 | 3.0 | | Orange City, Ia. | 10 plants (mixed) | 364 | 19.0 | | Creston, fa. | Appliance, chemicals, oil filters | 424 | 1.0 | | Grinnell, Ia. | Farm machinery,
stadium bleachers,
plastics | 200 | 7.0 | | Decorah, Ia. | Screws; undetermined | 1 212 | 8.0 | | Star City, Ark. | Apparel (shirts) | 336 | 9.5 | Table 2 Proportion of Plant Workers Migrating to Take New Employment | Census
Region | No. of
Studies | Average
Percent | | | |------------------|-------------------|--------------------|--|--| | North Central | 6 | 32 | | | | South | 4 | 32 | | | | West | 1 | 18 | | | | All Regions | 11 | 30 | | | An example of the encroachment of housing developments on agricultural land. Photo courtesy of Jim Larison, University of Wisconsin. single job to the disadvantaged who live there. Although the labor force may expand faster than the ranks of the unemployed, the absolute number of persons in economic distress may be unchanged or slightly increased (Table 3). In general, the case studies showed that the operations of the local labor market often work against the needs of the people for whom rural industrial development has been allegedly promoted. #### Employment - Multiplier Effect Besides hiring local workers for its factory, new industry is expected to generate secondary jobs in the retail, wholesale and service trades of the host community. This indirect effect on employment is called a "multiplier." A multiplier of 1.0 means the industry brings no new jobs except those by direct hiring. A multiplier of 1.65 means that for every new job in the factory, another .65 job is created within the community. A significant finding of the case study review was that the majority of industries in the rural community had a multiplier effect of less than 1.2. Several reasons were given for these low multipliers: First, the less diversified the existing manufacturing, commercial and service industries are, the less impact the new industry will have on local economy. Table 3 Unemployment Rates Before and After Industrial Development | Study Sites | D
Before | ates
After | | es (%)
After | Change | |---|-------------|---------------|------|-----------------|--------| | Jackson Co., la, | 1950 | 1960 | 1.8 | 3.7 | +1.9 | | Cross Co., Ark, | 1960 | 1970 | 5.2 | 4.6 | -0.6 | | Washington Co., Miss. | 1950 | 1963 | 10.1 | 4.2 | -5.9 | | Box Flder Co., Utah | 1955 | 1965 | 6.7 | 7.0 | +0.3 | | Putnam, LaSalle and
Bureau Co., III. | 1966 | 1973 | 3.6 | 5.0 | +1.4 | | Adair Co., Okla. | 1960 | 1970 | 16.4 | 17.5 | +1.1 | | Cherokee Co., Okla, | 1960 | 1970 | 16.2 | 10.0 | -6.2 | | Muskogee Co., Okla. | 1960 | 1970 | 8.9 | 7.4 | -1.5 | | Hot Springs Co., Ark. | 1958 | 1970 | 11.9 | 7.0 | -4.9 | | Baxter Co., Ark. | 1964 | 1970 | 8.2 | 4.7 | -3.5 | | Howard Co., Ark, | 1960 | 1970 | 4.3 | 3.9 | -0.4 | | Logan Co., Ark, | 1958 | 1970 | 15.6 | 6.8 | -8.8 | | Randolph Co., Ark. | 1964 | 1970 | 9.4 | 9.3 | -().1 | | Benton Co., Ark. | 1960 | 1970 | 5.5 | 4.5 | -1.0 | | White Co., Ark. | 1960 | 1970 | 12.1 | 12.1 | 0.0 | | Laurel Co., Ky. | 1960 | 1963 | 12.6 | 7.1 | -5.5 | | Lamar Co., Texas | 1952 | 1962 | 6.0 | 5.2 | -0,8 | Second, commuters, who generally make up a substantial part of the rural factory work force, often spend their salary in their place of residence rather than their place of work. Much of the factory income "leaks out" of the host community. Third, many small towns already have excess underutilized business capacity. As a result, the firm can handle industry-induced increases in sales without hiring additional workers or enlarging their capital stock. Fourth, many industries are linked by a national network to outside suppliers and processors and have no need to draw upon local services or products. At worst, the local community may become little more than a labor source for the factory with virtually no indirect or induced employment. Four often cited studies (nos. 15, 16, 17, and 18 in Table 4) that depict nonmetropolitan industry with a multiplier of 1.5 or more were closely examined by the review team. In each of the studies it was found that only those rural counties had been selected that had relatively large manufacturing sectors (more than 15 percent of total employment) and were undergoing rapid and substantial economic growth. According to these criteria, only 30 counties in the entire U.S. qualified in 1970. #### Income Industrialization of the rural area does bring an increase in average income over a period of time. The case studies showed that average increases in individual income varied from 5.3 to 183.0 percent, and average family income increases ranged from 25.6 to 178.4 percent. However, in most cases both family and individual income increases were less than 50 percent. Three factors were largely responsible for the frequent cases of relatively small income growth: - * Small income increases were usually associated with lower wage industries such as wood, textiles and apparel. - * Industries importing raw materials into the area and exporting products out of the area created smaller secondary income effects as discussed above. - * A substantial amount of commuting by nonresidents into an area for work, and by residents out of an area to shop, reduced the size of income growth. Significantly, of the numerous case studies on industry's impact, very few had considered how income growth is distributed throughout the population. Of those studies which did examine this factor, all suggested that certain sectors of the population receive no benefits from industrial development. Indeed, for groups such as the elderly and blacks, industrialization often has negative effects. As the community's standard of living rises, prices go up and the purchasing power of these disadvantaged groups decreases. In addition, several of the impact studies showed that the greatest gain in benefits went to newcomers in the com- Table 4 Employment Multipliers | | Study Site | Unit of
Analysis | Research
Time Period | Industrial
Product | Direct
Employment | Employment
Multiplier | |-----|----------------------|---------------------|-------------------------|--|----------------------|--------------------------| | 1. | Linton, Ind. | City | 1964 | Aluminum chairs | 119 | 1.02- | | 2. | Gassville, Ark. | 8-County Area | 1960-63 | Shirt plant | 750 | 1.11 | | 3. | Summerville, S. C. | 4-County Area | 1963 | Brick factory | 25 | 1.36 | | 4. | Pickens, Miss. | 4-County Area | 1964-65 | Tissue paper mill | 57 | 1.14~ | | 5. | Braxton Co., W. Va. | County | 1963 | Particle board plant | 77 | 1.50 | | 6. | Hart Co., Ky. | County | 1963 | Bedding plant | 111 | 1.06- | | 7. | Fleming Co., Ky. | County | 1958-63 | Auto & appliance trim, shoes | 328 | 1.11 | | 8. | Laurel Co., Ky. | County | 1958-63 | Yarn | 107 | 1.18 | | 9. | Lincoln Co., Ky. | County | 1958-63 | Apparel | 380 | 1.00 | | 10. | Marion Co., Ky. | County | 1958-63 | Barrels, Communications equipment, Apparel | 496 | 1.11 | | 11. | Russell Co., Ky. | County | 1958-63 | Apparel | 206 | 1.03 | | 12. | Howard Co., Ind. | County | 1949-60 | All manufacturing | 4,006 | 1.44 | | 13. | Box Elder Co., Utah | County | 1955-61 | Chemicals | 5,688 | 1.34 | | 14. | Lawrence Co., Tenn. | County | 1954-63 | Bicycles | 2,270 | 1.36 | | 15. | Select U.S. Counties | 11 Counties | 1950-60 | All manufacturing | 17.116 | 1.65 | | 16. | Select U.S. Counties | 10 Counties | 1960-70 | All manufacturing | 25,677 | 1.68 | | 17. | Leflore Co., Miss. | County | 1959-64 | All manufacturing | 1,430 | 1.59 | | 18. | White Co., Ark. | County | 1951-59 | All manufacturing | 590 | 1.71 | munity rather than to the original residents. This suggests that the people who bear the cost of the development (by increased taxes for land development, for example) may not be the *same* people who will capture the benefits and in fact they may find themselves in a *worse* relative position after development than before. The question arises as to whether industrial development is a desirable community goal simply because it may marginally increase average income. The basic issue boils down to whether growth in "community" well-being should be purchased at the expense of the disadvantaged. ### **Population Changes** Does industrial development halt population decline in small towns or rural communities? The answer is unequivocally, yes. All case studies dealing with industry's impact on rural population showed that the rate of population decline had been slowed, halted, or—as in the majority of cases—reversed after industry's arrival. However, the studies also made it clear that most population growth was based on an increased migration of workers into the area. In eleven case studies, an average 30 percent of factory workers had moved into the host communities to take their jobs. The majority of these workers had originally commuted to the factory from neighboring areas within a radius of 50 miles. Eventually, however, as the workers became more settled and secure in their jobs, most of them moved into the host community or nearby towns. Exceptions to this trend occurred when a county had well-developed transportation and educational systems, as well as a surplus of labor. In such instances, employees preferred to commute rather than move to town. The population
growth that accompanied industrialization was found to be centered in the factory town rather than being spread throughout the country. In almost all cases, the population in the host town increased while the rural and farm population of the surrounding area decreased. Thus, industrialization frequently caused more of the county population to become "urbanized" or "suburbanized" without causing any overall increase in county population. Industrial location is often promoted as a technique for achieving urban-rural population balance. Our findings, however, suggest that what industry does achieve is a redistribution of the local rural population rather than a movement of people into the area from distant metropolitan areas. In a number of case studies, the age composition of the population also showed slight change with the arrival of industry. The changes were primarily due to migration in one form or another. In some instances, age declined due to in-migration of young workers with young families. A close look at twelve case studies revealed that most industries preferred to hire young adults who could handle physically hard work. Yet, surprisingly, industrial development failed to stem the flow of young people migrating out of rural communities. This is noteworthy in light of the popular notion that attracting more industry to the small town will eliminate the need for the young to leave home in search of work. ## Benefits to the Public Sector Industry is actively sought by small communities in the hopes of enlarging the community's tax base. An enlarged tax base means an increase in public income and the expansion of community services. In general, industry's contributions to the public income can be divided into two categories: direct payments and induced (or indirect) payments. #### **Direct Payments** Property Tax. The actual size of industry's property tax bill is largely determined by local and state tax structures and by negotiated agreements between local government officials, development representatives and industrial management. Case studies show that frequently local government is willing to grant "tax holidays" exempting industrial property from taxation for 5, 10, or 15 years. This is a form of subsidization for industrial development and as such is a cost to local government. Fees and Service Charges. Communities with municipally owned utilities can expect direct payments from industry for services rendered. These utility fees should at least equal the cost of extending service to the plant. The evidence suggests that in many communities costs are, in fact, all that is recovered from fees and there are no net gains from utility payments. The few studies which focused on industry's direct payments to local government suggest that most of the potential for income gain by the host community is bargained away. Many local leaders are willing to trade direct revenues from new industry for indirect funds on the apparent assumption that the latter will outweigh the former. #### Indirect Payments Indirect payments by industry to the public sector are more diverse and are based on industry's ability to boost local average income and subsequently increase the value—and tax assessments—of local properties and businesses. Wages and salaries paid by the new industry are a stimulus to growth and add to local income only to the extent that the plant's payroll is spent in the host community. However, one case study revealed that through leakage of income to nonlocal recipients, an average weekly plant payroll of \$6,000 shrunk to \$4,779. The "leaked" money was spent primarily on food, services and investments in neighboring communities; was put into savings; and was used to pay off old debts. In rural communities, gains in aggregate disposable income may be more apparent than real for the local market. Increases in local public revenues result from industrial development only when growth in the private sector is converted into public monies. These monies include increased property taxes from the expansion or construction of new homes and businesses, increased retail sales and sales tax, increased utility fees and an increase in the transfer of state and federal revenues to the local community. Residential and Commercial Property Tax. New manufacturing jobs in a community generally mean that more income will flow into home construction and improvements. This in turn means an increase in property values and proportionately, property taxes. Likewise, as residents spend more disposable income and as industry draws upon the services of local businesses, existing commercial establishments will expand. In fact, all the case studies showed that industrial development did bring increases in assessed valuation of property and subsequent increases in local property tax revenues. However, the case studies also revealed that increases in housing construction or business expansion cannot be predicted with certainty. Many small towns have both underutilized housing and excess business capacity. This slack means that the town can accommodate a certain amount of growth without ever increasing its commercial or residential tax base. Retail Sales. Case studies showed that retail sales in industrially developing communities increased substantially from preindustry levels. In those communities which have a local sales tax, or which receive a transfer of state sales tax receipts, this growth in sales can mean increased revenues. Fees for Services. User fees and charges such as licenses, building permits and rental fees on publicly owned land generally increased as a result of increases in disposable income or a change in the consumption pattern of residents. Public utility income was seen to rise in a number of case studies. Intergovernmental Transfer of Payments. Because of legislative constraints placed upon their taxing authority, many municipalities appeal to state and federal governments for a transfer of funds back to the local level. The case studies indicate that as industrial development increases the local average income and as industry's output grows, the volume of these transfer payments also increases. Larger amounts of the taxes on personal income (gasoline, sales, and income tax are typical) find their way back to the local community. Similarly, a greater proportion of corporate income taxes or gross receipt taxes on industrial output are turned back to the host community rather than being added to the state's general fund. The case studies suggest, however, that industrialized communities may come to depend on state and federal payments for a larger share of their total receipts. Frequently, this dependence on transfer payments is only temporary and declines after a period of adjustment. For example, since the gasoline tax is more immediately responsive to growth in economic activity than is assessed valuation of property, local officials may temporarily rely on gasoline tax transfer payments rather than on property tax to meet immediate costs. The case studies are very consistent in reporting increases in local revenue following industrial location. The assessed valuation of property clearly is expanded and property tax receipts increased in every community. Retail sales consistently increased resulting in added revenue from sales tax. Intergovernmental transfer payments increased in absolute dollar amounts and communities appeared to shift the tax burden from local toward nonlocal revenue sources. The sum in the benefit column can add up to a substantial amount. # Cost to the Public Sector If one considers only the benefit stream, the conclusion must be that new industry produces added revenue for the local public sector. But an often overlooked fact is that the added revenue brought to the community by industry may be equalled or even exceeded by added and often unexpected costs. For this reason it is extremely important to consider how new industry contributes to the costs of the public sector. Attracting New Industry. The initial costs of new industry arise when a community attempts to attract a plant to its area. The most frequently incurred costs in the wooing of industry are as follows: - * land acquisition costs. - * site preparation (including extension and improvement of access roads and preliminary landscaping), - * loss of previously collectable property taxes in in- - stances where new industry is given a tax "holiday" or reduced rate, - * increased police and fire protection, - * provision of water and sewerage, electricity and/or gas, often for fees that are less than cost. As an example of the large investments that some communities have in their efforts to attract industry, consider the city in Kentucky that issued \$250,000 worth of industrial revenue bonds to finance land acquisition and building construction for a shoe factory. Since the land and building were city-owned, they were exempt from real property tax. In addition, the city granted the company a five-year exemption from personal property taxes. In another case, a Kentucky city issued a \$650,000 revenue bond and held title to the land, building and part of the equipment of the plant making them nontaxable. The city also extended a water line to the plant at a cost of \$10,000 to the city. All these development efforts by the local community are forms of subsidy and must be regarded as costs to the community. In some instances, part of the subsidy cost is recovered, but in other instances only a partial recovery is achieved. Often local public officials underestimate a new industry's requirements for community services above and beyond the initial commitment to land, building and equipment. These additional costs of government services, plus costs of school expansion and environmental degradation, also must be recovered by the public sector if it is to realize a net gain from new industry. Accommodating Growth. Besides the costs of
attracting industry, the host community must also accommodate the costs of a growing population. As mentioned above, industry frequently brings an influx of new workers who are primarily young adults with families. These in-migrants place increased demands on the community for schools, health care, and recreational and general services. Growth in the number of residential and business properties also places greater demands on local government to provide improved police and fire protection, road maintenance and water and sewerage services. Eleven out of twelve case studies showed substantial increases in costs of community services to residents with the arrival of industry. Water and sewerage services, particularly, were important sources of increased cost. Rockdale, Texas, for example, was forced to drill a new city well and to issue a bond for sewerage line extension as a result of industrial development. The case studies suggest that while public officials often overestimate their communities growth capacities, they underestimate the capacity of existing utilities and services to accommodate development. The result is a major outlay of public funds that increase the per capita cost of public services. Expanding School Services. The case studies provided consistent evidence that new industry increases the population of school-age children. It is also clear that increased enrollment resulted in increased operating budgets for schools and sometimes in high capital outlay to accommodate new students. While some of these additional costs are recovered through increased taxes and intergovernmental transfer payments, part of the burden must be carried by the host community. Left (page 10): Aerial photograph of the new Hennepin Works Division of Jones & Laughlin Steel Corporation, about 120 miles southwest of Chicago. The plant, which is now nearing full production, is located on J&L's 6,000 acre site, and has about 30 acres under roof. Below: Jim Larison photo shows the effect of new sewage lines on rural land. Environmental Degradation. Industry brings long-term alterations of the environment: loss of open space and agricultural land, increased man-land density and changes in land use patterns. In addition, industry frequently brings problems of air, noise and water pollution. At the time most of the case studies were made, the environment was not a major concern and one observer made this comment: The most striking social cost to the town imposed by industry is water pollution, which in most of the towns studied has reached serious proportions. The concern for this problem shown by town governments is after the fact. Since industry is primarily responsible, the weak position taken by local government suggests that the absence of water pollution control is one form of industrial incentive.² #### Net Gains The net gain of new industry to the local public sector is the difference between its direct and indirect cost and its direct and indirect benefits. While most case studies have stressed the benefits side of the ledger, a few have also looked at the cost side and found some interesting facts. In one study five Kentucky towns with eight new plants were examined. It was found that only two of the plants produced revenues in excess of that yielded by the property prior to the plant location. Analysis of secondary impacts, where one might expect net benefits due to operation of the multiplier effect, corroborated the negative impact of new industry. Other studies which compared estimated net gains of the private sector with net gains by the public sector also showed some sharp contrasts. One estimate, which closely approximated actual conditions in twelve communities, showed the private sector averaging a net gain of \$152,981. The public sector averaged only \$521 and the school district \$401. This kind of evidence challenges the belief that new industry will substantially improve the fiscal burden of many nonmetropolitan communities. The evidence also suggest that were local government more assertive in channeling private sector gains into the public sector, industrial location could contribute more positively to a community's fiscal well-being. In summary, industrial location in the rural community can bring employment, population growth and economic prosperity to the area; but as the studies have shown, these benefits do not come automatically nor do they apply in all cases. In some instances the structure of the community and the character of the particular industry merge to the benefit of both parties. More often the industry clearly gains while having a negligible or even negative effect on the host community over the long run. Gene F. Summers, Sharon Evans, Jon Minkoff, Frank Clemente, and Elwood M. Beck, Jr., *Industrial Invasion of Nonmetropolitan Amarica*, New York: Praeger Publishers, 1976. Abt Associates, Inc., "The Industrialization of Southern Rural Areas: A Study of Industry and Federal Assistance in Small Towns with Recommendations for Future Policy," Washington, D.C.: U.S. Dept. of Commerce, Economic Development Administration, Office of Economic Research, December, 1968. 3 6668 14109 8808